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COMPUTER AIDED DESIG™
Ceourse Cade — MEGIS

l:]hjﬂ;liv:l.':
= To provide an overview of how compuiers can be wtilized i mechanical component
design

Camlenis:

Mlodule- 1

Fundamenials of Computer Graphics. Product cyele, sequential and concwrrent engineerig.
Comzputer Alded Design, CAD system architeciure, computer graphics, Coprdmate systems, 25
amdd 3T trams frmanions, viewing wansformstion (% hirsp

Moedufe- 1
Creamieric Modelling. siraight line, representauon of curves, Hemmite curves, Bezier curves, B-
spline eurves, rational curves {5 hirs)

Mloduade- 111
Technugques of surface modellmg, plave sarface, cvlindocal surface, surface of revolation,
surface patch, Coons and bicubis patches, Bezivr and B-spline surfaces (6 hrs)

Mlardube- TV
Fundaniental of =alid desgn, parametne space of 4 sobd, surface and curves i a sobid, Schd
modellma bechnpgques. C5G and B-rep. (6 hirs)

Masdube- ¥
Visual realism- hodden lme-surface-solid removal algonitlims, shading, colouring. computer
animation (5 hrs)

Muodule- V1

Assembly of parts- assembly modelling. imterferences of positions and orientation, solerance
analvses, mass propenty caloulations, mechamsm stmulateen and aoterefence checkmg CATL
standards- Graphical Kemel System (GES), standards for vexchange images, Open Graphics
Library (OpeniGLy, Data exchange standards- [GES. STEF, CALS egc. Communicaton
standards (12 hrs)



Product Life Cycle

gire 10 shows the e cvele of 2 fvpical product, The produsct begrms with @ need which
ts sdentified based on customers” and markets” demands. The prosfuct goes through two moin
processes from nception fo o fmshed prodect; the desipn process and the manufsctunng
process, Synthesis and analysis are the two main subprocesses of the desipn process. The
philesephy, fmctionality, and uniquencss of the product are all dedermined dunng synthesis,
During svnthesis, o design tukes the form of skefches and lavout drnwings thae show the
relationship among the varows prodhect parts, These skedches and drawings can be created using
g CADCAM svstem or simply band-drvwn on paper. They are used during brnstormimngg
discyssions pmong variois desien teams and for presentntion purposes,

The anolysis subprocess beging with an aitempt 10 put the concepiunl design mio the
comtext of enginesring sckences o evaluate the performance of the expected product. This
requites design modeling and simualation. An imporiant aspect of analysis is the “what "

questions that belp vs to elimingte multiple design choices and find the best solution 1o each
design problem, The cutcome of analvais is the design documemation in the form of enginesnng
drerwings (alsae known s hlueprinis),
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Figure 1.1 A typical product cycle.



131 Graphics Systems and Hardware

Hardware comprises the fepud. and display of ewipu! devices. Mumerous types of graphics systems
are in s thase that model one-to-many ioteraction amd others thar ollow one-to=one inferfoce of o
siven time, Mainfrome-Bayed svefems usc o large mainfeame compater on which the sofoware, which
is snally a hege code regquiring large space for storage. isnstalled, The svsiem is networked oo many
designer stations on Lime-sharing basis with display onit and input devices for each designer. 'With
Huis setling. intncele assemblies of engineenng compoaents, say an airceall, requinng many human
designers can be handled, Minfeoampres or Woeksioron ased systems ae smaller in scale than the
Muinfnome systems with o freoted aumber (one o meted of display and mpol devices, Boalh sysiems
employ one-to-many inferface wherzin more than one designer can interact with a computee. On the
contrary, Micrcompaler (PCY based systems allow only one-to-one inferaction sl o me. Between
thie Muinframe, Workstation and PC based systems, the Workstation based system offers advantages
OF adpstributed cosmputing and setworking potential with livwes cost compared with the manframes

L322 Inpul Devices
Keviaged and mouse ore the primary inpet devices. In a more involved environment, digitizers,
porstickes il fahlers are also ussd Trackballs i input diads e osed 10 prodice comples models,
Dats gloves, image scanners, touch seeeens and light peps are some other input devices. A kKevboand
i =g For submiiting adphanomersic inpud, three-dimensional coordinates, and other nem-eraplic dota
i rest” foron, A maowse isa small hand held pointing device used to control the pasition of the cursor
om Hhe screen, Below the mouse s o ball, When the mouse is meved on @ surlice, e amoumn ) wod
directiom ol mawvermien? o] e cursor s proporiioml o that of the moose, i oplicil moass, an optical
sEfsOr maving on o special mose pad Raving orthogonal grids deteces the movements, There are
puishi Buttons on wp ol this ol beneath the Gogers for signnling the execution of an operilion, for
selecting un object created on the sereen within b rectangular area, for making a selection From i
pulled down menw, for dragging an object from one part of the screen o eolber, o for crealing
drawings and dimensioning, IEis an important device gsed lo expedite the drawing operations, A
special -mowse Tfor CAD. animation and vireal reality includes three buttons, o thumb-wheel and o
trach-ball om tog v gives six degrees of freedom for spatial positionimg 10 4-v-2 directions, The z-
k= s used Tor otating the object around a desired axis, moving and navigating the viewing
position {observer’s evel and the objecl through a three-dimensionnl scene.

Frackballs, spece-balls awd govsiioks are other devices used 1o create wo and three-dinwensicmal
drawngs with ease, Trockball is & 2-D positioning device whereas space-hall 15 wsed for Lhe samee 1@
2D A povatick has a vertical lever sticking ol of @ base box and s used (o savigate the screen cursor,

Digitizers are vsed to create drowings by clicking input coordinates while holding the device over a
given -0 paper drowing, Maps ond boundaries 1o survey map, For esample, cim be digitized 1o
Ccreate s compler mp. Tewch pogels and Tphi peas are inpal devices interacting divectly with the
computer sereen, With wuch panels, one can select an area on the screen and observe the details
pertnining 1o thal area. They use infrared light emitting diodes | LED=| along vertical and horizontal
edges of the screen, and 2o imto action dae o an mterrapion of e beam when o fnger 1= held closer
ty the screen. Pencil shaped dght pews are used 1o select screen position by detecting the light from
the screen. They ore sensilive o the shor burst of light emitted from the phosphor costing as the
electron beim hits the screen, Scaroers dnd used te digifize ansd input o twe-dimensionsl photogeploe
dat or texi for compuoier storage or processing. The gradations of the houndaries, gray scale or color
o the picture 15 stored as daty armys which can be vsed 1o sdit, modily, crop, rotate o scale fo
enhance wnd make suitable changes inthe image by sollware designed dsing geomelric s forations
and image processing lechniguees,



133 Display amd Ouipul Devices

Three types of display devices are in use: Cathode ray whe (CRT), Plasma Panel Display (PPDy and
Lrguid Crystal Dhsplay (LCD), CET = o popular displiy device in use Tor its o cost amd high-
resolution color display capabilities, Tt is & @lass tabe with o Front rectangular paned {screen) and o
eylindrvcil rewr lobe. A cathosde ray gun. when electrically healed, gives oul @ stream of elec s,
which are then focused on the sereen by means of positively changed electron-Tvusing lensaes The
position of the focused point is controlled by orthigonal (hosizontally and venically deflectingy sel
of armpliliers armanged i parllel wthe path of the electron beam. A populer method of CRT display
i the Raster Scan, In raster scan, the entire screen b5 divided inocoa mairin of pleture cells callad
pively. The distance between pixed centers i3 about U225 ma The total number of pixel sets s usuaily
refierned L s resefierion, Commonly dsed CRTS are those withy resolugion of o= 3800 (VA ), 1024
 T6R (NGA) and 1280 = 1024 (3XNGAL With higher resolution. the picture guality s much sharper,
A the Tocused electmaon beam sivikes a paxel, e Bitter epmits lght, e, the pasel 15 on' aoed it becomes
bright for o small duration of time, The electron beam is made to scan the entire screen lime-by-line
from top te bettom (525 honzomtal lives in Amercan system and 623 lwes in Eoropean system al
033 microseconds per scan e, The beam keeps on retracing sthe path, The refeesh vafe is GHz,
implying that the screen is completely scanned in 160™ of a second (for European system., it is L5070
of a second), Ina black and wihite display, if the paxel intensigy 1= 07, the pixel appears black, and
wheen *17, the pinel is bright. As the clectron bewm scans throwgh the entire screens il swiltches off

thuse pasels which are supposed o e blick thos ersding o paiien on the screen. For the elecimon
beam Lo know precizely which pidels are 1o be kept "oll” during scans, a friome iffer is nscd thal is
i hardware programimable memory, AL Feast e meniory i 0" or 717 s peedad for each pxel, and
thiee are as moy Biis allocated in e memory as the number of pixels on display. The entire memery
reguirad For displaying all the pixels s called a bir plare of the frame baifer,

Ulne bit plane would create only a "black” and “white” image. but Lor o realistic picture. one would
necd gray fevels or sliades between hlack and white a2 well, To control the ineasity (or shadz2) of o
pixel ane has 10 use 1 numher of hit planes in a frame haffor. For example, if one uwses 3 hit planes
in single frame buffer. one can create 8 (or 2°1 combinations of intensity levels (or shades) for the
s pasel- OO Black b0t QL= O1=100-1 1 liowhate s, The mtermreduate values woill control
the inkensity of the electron beam fulling on the pixel. To have an idea about the amount of memary
requirad For a black and white display with 236 = 256 (or 1""] pixels. every bit plane will require &
memery of 218 = 65,536 bits. 1 there are 3 bit planes W control the gray levels, the memory reguired
will b 190,608 hits! Siece memery 1% @ digital device amd the raster action 1= analog, ome needs
digital-to-analog converters {DAC). A DAC takes the signal from the frame buffer and prodeces an
equivilent anslog signal to operats the electron gun in the CRT.

Far coder dfisplary, all cobors are generated by o proper combination of 3 basie colors, vie. med.
green, and blwe. IF we assign 07 and 1 1o each color in the order given., we can generafle § colors:
black (OCHT), red (100, greca (000, blue ((RI0), welbow (RI0). cvan (G0 1) magenta (101 ) and white
(111 The frame boafler requives o mimimirm of 3 bil plaines—one for ¢ach RGE cokors this cin
generite & different colors. 11 more colors are desived, one needs o increase the mumber of Bit plimes
for cach color For example. if each of the RGE colors has 8 bit plancs ta total of 24 bit planes in the
frame bufTer with theee 8-bit DAC ), the ot auimbser of colors avallihle for pletwre display woubd be
M= 167, 77.216" To further enhance the color cupabilities, gach B-bil DAC is conpected o acolor
ook up memory able. Vamoes methods are employed Lo decrease the aceess and display time and
enhance the piciure sharpoess,



Coordinate Systems

Three types of coprdinnie systems are needed 1n osder 10 input, store, and desplay model
peometry and grophics. These are Model Coondinate System (MOS) Working Coordinate
Swstem (WS}, ond Screen Coordimate System (3C5), respectively. Other nomes tor MCS are
datobess, master, or world coordinote system, Another name for 505 s device coordinsle
system. Throughout this book, MCS, WCS, and 5C5 are used. We hove covered each briefly in
Tutorial LA,

241  Model Coordinate System

The model ecoordinate system i3 defined as the reference space of the model with
respect to which all the model geomenrical data is storved. Tt es a cartesaan system which forms the
default conrdhinate syvstem nsed by a particular software peogram. The X, ¥, asd £ axes of e
MO can ke displayed on the computer sereen, The onigin of the MOCS can be arbitranly chosen
by the nser while iz erentation 15 establizhed by tbe softweane, The three default sketch planes of
a CADVCAM syarem define the theee planes of the MOS, and their intersectaon point is the MCS
origin. When a CAD designer beging sketching, the origin becomes a comer podnd of the profila
being sketched, The sketch plane defines the orientation of the profile in the model 10 space.
This is bow we attach te MOS to o geometric model,

In arder for the wsar o commumaste properly and effectively with o model databazse, the
relafionships bepween the MCS orthoponal (sketch) planes and the model views muost b
understond by the pser. Typcally, the software chooses one of two possible anentations ol the
MOCS in space. Az shown in Frgere 2.4, the XY plane 15 the homzontal plane and defines the
madel fop view, The front and nght =ide views are consequently defined by the X2 and ¥2
plarses, respestively, Figure 2,46 shows the other possble onentation of the MOS where the XY
plame 15 verfieal and defines the model frong view, As a resule, the X2 wmwd the V2 planes define
ihe top and the nght side views, respectively,

Existing CAINVCAM software uses the MOCS as the default WOS {see Section 2.4.2), In
both orentations, the XY plane is the default constmaction {sketch) plone. If the user utilizes such
a plang, the first tace of a model 1o be constructed becomes the top or front vigw, depending on
which MCS s used,



242 Working Coordinate System

It i= aften convendent in the development of peometric models and the input of geometric
data to refer ¢ on auxiliary coordinate system instead of the MCS. This is usually useful when a
desired plane (face) of construction 15 nol easily defined as one of the MOCS orthogonal planes,
gz in the case of nclined foces of a model (see Example 2.1% The user can define a cartesian
coordinate system whose XT plane 1s coincident with the desired plane of construction. That
syatem 15 the Working Coordinate Svstem. WOS. It 15 a convenient user-defined systermn thed
facilitztes peometric constraction. It con be established at any position and orientation in space
that the user desires. While the user can mput datn in reference to the WS, the CAD software
performs the necessary trumstormations to the MCOCS before stonng the data, The ability to use
ban separabe coordinpte svstems within the same model database in relatton to one another gives
thiz wsar great Hexibility. Soome commercial softenre retfers to the WS as i5; Unigraphics ofters
an-examgle, Other software reters @0 it as a sketch plane (Pro'E and Solid Works ) of constriction
plane,

A WS requires three noncollinenr points i define its X¥ plone. The first defines the ori-
i, the First and the second defime the X axis. and the third point with the first define the ¥ oxis,
The Z axis is determinesd s the cross product of the two umit vectors in the derections defined by
the lines connecting the first and the second (the X axis), and the first and the thid points (Y
axish Wi will use the subscript w to distinguish the WOS axes from those of the MOS. The
X ¥, plane becomes the active sketch (working) or construction plang if the wser defines o
WIS, In this case, the WS and its comresponding X, ¥, plane overnde the MCS and the default
sketch plane. respectively. As a matter of fuct, the MOCS with its default sketch plone is the
default WES with its X, ¥, plane. Al CAIDVCAM softwore packages provide users with three
standard WS (sketch plames) thal comrespond b the three standord views: Front, Top, and
Right sides The user con defing other WCSs or sketch planes.

2.4.3 Screen Coordinate System
In contrast to the MOS and WO, the sereen coordinate system (5C5) 1= defined as o

20 device-dependent coordinate system whose ongin is usually focated af the lower lett comer
of the graphics display, ac shoem in Figure 2.6, The plysien] dimensions of a davice soreen
(aspect rtiod ad the type of device {raster) determine the range of the SC5, The 5C5 15 mostly
used in wiew-related clicks auch a5 definitioons of view orgin amd window or clickaing a view o

sedect ot for graphacs opesations
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Figure 2.6 Typhkoal SC5.

A u2d Jo2a disphesy ek an SOCE with o snigs a0, 0 s 128, 10245 The eatiler ol s
screen s conrdinaies of 131231 2), This S5 is used by the CADMCARM sodtwane i display rels
gvand prophice by somverting directly fram MOS coonfinns o S0 (phesmal desice)
podinabes, & pormabeed SO5 con el bBe ubifizes], The ranpe of the SCF g be ehesen fmem
ROy 1w (1.0 Such eepresenmtion can be tasloed by devicesdependent codes 10 e
mppropriate phy=ical device coordinaies. The third meibod of delfinme am 5C5 18 by using the
trovwing siee that the waer chosoegs, 100 sieg A dreanving 8 chisen, the mnge of the SC5 beoomes
Py o (LEEE whibe sime B peoduces the range (L0} o (17, 11 Tlwe retionole behind ki
meethosd stems from the comvenvional dranwing board s thas the dradbing peper is represeed by
ke iy s siroen

A trntalimation gperaticn from MOS coordiveszs to S05 enondingies @ perfoomed By the
software before displayving the model views and graphscs. Tvpically, for o poonsecric model,
thore inon dain Finciure & 8lone it peometng dot (redative b MOSE, omd o display fils b slore
15 disgalay clata frelative e 50

L1 Hotabied i Two-[Nimehsions
Consiclor a |'|i.l":||.| Il 5 racked will [Humis F.. tr=1, ... ripawd let & frimnt f"‘_rl'l_l, \_II o & b poraned
aboud e Z-axis o F;i ql'., 5 ;:. by am apgle @ Froan Frgure 223, 40 can b observed th

l.:. = gps (B i) = Foos o cos @ = sin i sin @

¥, Flixg, p)

= X, oo B — ¥osin B
il 1': = s (8w iy m | Eos 0 5in B+ din 8 eos @
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CIr in meadrix fonm " N -

Ky o —sin @[ 1 L
™ o "|=p=mp, 2n
v, Ain & con d |l vy .

Fiiey w

) wmd —sind]| L o v 1
where R = o soil is the two-dimensionol Flgnre 2.3 Rotatlon in o plase
rotation mateix, For & to be rotated by an angle &,
transformation in Eg- {2,011 must be performed simultancousiy for all points Podi= 1.0 0, i) such

thai the entire rigid body reaches the new destination §°.

21.2.2 Translation in Two-Dimensions: Homogeneous Coordinates
For a rigid body § 10 be translated aleng o vector v such that coch point of § shifts by (p, gL
] ¥ )
L:-=J.'l,-+l|l'.'. 1".T=T.‘"-"f=:' ‘I = 11 - : =:-P':;'=|:'|,+1'
) ¥y i



233 Combined Botation and Translation

Consider o point ™ O, v, 11in the =¥ plane to be motobed by an ongle 8 aboat the 7-nxis to o position
P Urga vy T Tolloweed by o ranslalion by w i g fo o position Py 00 ve, 13 Using Eqs 02,30 omad (2,4,
W Akry Wi

1 0% —an LEN | IR
Fi=RP, |5 |=|saf ocmtd Ofx
1

| 1 i
r's I o pilx I 0 pllees® —sin® 0Of]x
all Py=Tr. v (=0 I gl wml=l0 | i || sin & cos & 1| v|=TRP
1 il ] | 1 L) i | L] i 1111
cos @ —sin 8 pl|x
Thus, Py=[sind cos @ g || (2.5

kP L bl

Chn the comtrary, if wanshitkon by v is followed by rotation about the z-axis by on angle 8w reach Py,
thicil
cos d —simd (1 O opllx cos fl —sin @ poos @ - gsin @[] ¥
Pi=RTP=|s«nf cos@ 00 1 gllvl=]|sin® cox® psinB+gsin® |[v| 26
LH) LF T o 141 11 i 1 |



L.1.4 Rotation of a Point @ ix,. ¥, 1) about a Point P (p. q. 1)

Sirce the roudion matrix B oboui the s-uxis and transtation matas T in e v-v plane are Enown from
Eqs 1240 omsh 42,35 respectively, rotation of ¢ aboal P con be regarded as nslating P io coincide
with the origin. followed by rodation abowt the s-axis by an angle &, and lastly, placing P back (o il
original position (Figuee 2.6). These mnsformions can be concatenafed as

¥ ki
o 2
h
!
& /
P ./.F'
i * i ]
Jai P im orpmal pesiinon 8 b1 Translming P &
¥ ¥
o @
-'lll
i
e B & ¥
I3 P
b/ by
i h e
e i ] T
(g} Rotaing FE? oo the 7 axis {dl Translatie P10 ws ooiginal podtion

Figure L6 Steps to retade paind F abot paint M

Xy I 0 pllcosf —sing OfL 0 -pffx,
Pm |y (=0 | g ||smd cos@® OO0 1 -5y, (2.7
I N | I il |0 o 1 [

135 Reflectlon

In 2-D, reflection of an object ¢can be obtained by rodating it through 1807 ohoat the axis of reflection.
For instance, if an objoct § in the v plane is to be reflected abowt the r-axis v = 00, reflection of a
poknt v, v, 1) S s given by (0% %, 1) such that

g i 1 @ ok i
]| v =] O =1 DOy | = II.“ ¥ £ 6}
I I I I | I
Similarly, retbection abour the v-axiys bs described as
i —X —1 0 O X
Vsl v [0 L Oy =Ryl (2.9

| N N O R Y | I |



220 Reflection Ahout an Arhitrary Line
Let £ be g poant on Hne L and 8 be an object in
twir-dimensional space. [t is required fo reflect §
about L. This rellection can be obtained as a
segjuence of the follwing irnsfonmations:

{) Transhale point DY g, g0 1) 1o coincide wilh
the origin O, shifting the line L parallel o itsell 1o translated position L

(b} Rotate L by an angle & such that i coincides with the v-axis (new position of the line is
L sy,

ic) Reflect S about the v-axis using Eg. (2.9)

id) Rotate L™ through —@ o bring it bock 10 L

je1 Translate L' to coincide with its original position L.

The schemaiie of the procedune is shown in Fizone 2.8, The new imoge 5% 5 U ve Checticn of 5 bt
L and the transformation is given by

I 0 pl|oosd sin@ O -1 0O Oflcosé —sin@ 0

ol g ||-sm& cos@ Q)0 1 O)|snF easd

[ I O il il iy o | ik il I
I @ -—p

w0 1 —g | = TypRi-MR,Ri&T, (20
a0 o |

227 Relection Throwgh @ Poelot
Aopainl P i, v 1) when reflected throogh the origin is writlen as P* (0, v% L= =0 = Thor

o —X -1 I LU | B L
wol=| =u |=| 1} -1 0y [=Ruly i 00
I I il i Il 1

For veflection of an object about o point P,owe woubd fequing to shift P, oo the ofigin, perfomms the
above reffection and then rransform P, back o iis original posiidon.,

231 Scaling
A ponnt P ix v, 1 belonging to the object 5 can be scaled 1o a new posiiion vector M (v, ¥%, | iusing
factons g, and g, such thi

¥ ¥ = Lo and v = Uy

Ow i miateis foom

wil=10 p 0| y|=5P (2.18)
| 1 Lh | |
pe 0 @
whereS= | 0w, 0| s the sceling matnx. Scale lactors gy and i, ore alwoy's on-#en and
0 il I

positive, For bath g, and g less thon 1, the geometsie maodel gets shrnk. In case of aiform sealing
wheen fy = o=l the model gets changed uaifoomly in seze (Figure 201 ) and there 15 no distortion



1.3.2 Shear

I why, 01
Consider 4 matrix Sh, = |0 I 0 [ which when applied o oa poiot P (x. v, ) resulis in
0 I
KT i alty T A sl v
ywli={0 1 of]y|= ¥ (2.2
| oo jfr] |1
I [ F )
which in effect shears thee point along the v axis. Likewise, application of 8h,= | sh, 1 0 on
P yiclds i, 3
x¢] [ 1 0 o)« A
¥E| = | 5N 1 bjl v | =&, 0+ ¥ {2:213
1| Lo o 1)t [

that is, the new poin gets sheared along the v direction,



2.5 Transformations in Three-THmensions
Muatrices developed for trunstormatbens o two-dlmensleons can be modifed as per the schama in
Eq. (223 for mse an three-dimensions, For
insince, the rasliion malris o move a [LIETHTH
and dhws am object, ¢ in Figore 203, by p vector
L o vy be writlen as

I [ I i
| | il i
T= 2.24)
I | r
omooa |

L5101  REotation in Three-Ddmensiomns

Thee potationt mistiin do Eq (240 can be modifiel o
sccomemoidare the three-dimensioan] bomogenons Figure .13 Trunshatlon of 4 donut alang an
conrdinates. For rotaticm by angle # obooi the - arbitrary vector

axis (ihe 2 coondisate does mol change ). we get

cis B —sind B 0
i £ H |

B.= s £ {2.2%
. i it [

n (r o 1

Furbier, vsing the cyelic e for the right-handed coordinote nxes, rolstion matricss aboog the 1-
aidd v-isls for wngled g aist 9 can be wriblen, espectivisly, by inspection as

I TR comd O sing 6
h cosgp —sing O ¢ 1 0 6

B, = i siniy om0 aml R_, T —sing 0 cos@d O {26
0 | g 9 o |

Beogateon of n poand by wogles &, o wngd i that oedery abost e 2-. v onad v-ais, respectively, is
o sl tramsformation esed ollen for mgld body rotaten. The comibloed rotadon s given as
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The scaling matrix can be extended from that in o teoadimenssomal cose (Eq. 2181 os

[T ih 0 il
i i 0 il
g = H
i ib [T il
i ik 1 |

{2299

where o g and g, ore the seoke faetors along oo v and 7 directsms, respectivedy. For amilirm overnll

sealing, J, =, = p. =

Altermatively.
[ T R )
(R R | TR
.':i| =
[{ T T Y |
(I I | T

has the same uniform scofing effect a5 that of Bg. (2,200, To ehserve this, we may wrile

254 Reflection In ThreeDimensions

Generic rellections about the v=v plune 17 becomes -z, v-2 plane (v becomes — x), and z-v plane (v

becomes —vi can be expressed using the following respeciivie Trans formations:
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1.5.3 Shear In Three-Dinensbsns
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4.5.2 Lines

Basic vector parametric equations of straight lines are derived here With py,
questions in mind. First, how is a line equation converted by the CAD/Cy

software into the line database which is at a minimum at the two endp

Ointsy of the

line? Second, how are the mathematical requirements of an equation correlareq
with various modifiers available with line commands offered by COMmMon yga,
interfaces? Consider the following two cases:

1.

A line connecting two points P and P,, as shown in Fig. 4,14, Define 4
parameter w such that it has the values 0 and 1 at P, and P, Trespectively,
Utilizing the triangle QPP |, the following equation can be written:

P=F+F-P) (4.9)
However, the vector (P — P,) is proportional to the vector P, — P, such
that :

P-F=ulP;-F) (4.10)

.F1 by

Fig.4.14 Line Connecting Twao Points Py and P,

Thus the equation of the line becomes
E oy n P=P,+u(P,—P,), 0<su<]i (4.11)
In scalar form, this equation can be written as
Y=Eyntuly;, —y)r 0=swu<l (4.12)
=g +u(z; —z;)
eqlat_i{:m (4.11) defines a line bounded by the endpoints P, and P, "f"h”'sg
associated parametric values are 0 and | respectively. Any other point of
the line or its extension has a certain value of u which is proportional to the

point location, as Fig. 4.15 shows, The coordinates of any point in the
figure are obtained by substituting the corresponding u value in Eq. (4.11)-
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The tangent vector of the line is given by -
Ft]}z—*P' {4'13}
or, in scalar form,
& X X
Vo= v, — oy (4.14)
?=zy—x,
The 1m:lr3|:l_ende§1ce of the tangent vector from u reflects the constant slope
of the straight line. For a ‘Wo-dimensional line, the known infinite (vertical
line) and zero ( horizontal line) slope conditions can be generated from
Eq. (4.14).
The unit vector fi in the direction of the line (Fig. 4.14) is given by
- e P Loy P'E
n = (4.15)
. s L
where L is the length of the line:
L=rP2‘_PI|=‘\‘J(F—-tz—-ra}i"f‘{}";"_]?l)E*‘sz-'E|}E (5.16)
Fs
fh,,-*‘i?‘- 2.5
Lawr T w3
P f"gﬁ,u-.-']" ;
f]’/"ﬁ:ﬂljj
" u=10 ' -
Fﬁ ‘___a-""-"l F 3
'P?'__,.-l" '-'T.!- =]
H=-1.5

Fig.4.15 Locating Points on an Existing Line

Regardless of the user input to create a line, a line database stores its
two endpoints and additional information such as jts font, width, color and
layer. Equations (4.11) and (4.13) show that the endpoints are enough to
provide all geometric properties and characteristics of the line. They are
also sufficient to construct and display the line. For reference purposes,
CAD/CAM software usually identifies the first point input by the user
during line construction as P, where u = 0. These 1wo equations can be
programmed into a subroutine that can reside in a graphics library of the
software and which can be invoked, via the user interface, to construct
lines. Point commands (or definitions) on most systems provide users
with a modifier to specify a u value relative to an entity to generate points
on it. In the case of a line, the value 1s substituted into Eq. (4.11) to find the
point coordinates,

A line passing through a point Py in a direction defined by the unit vector fi
(Fig. 4.16). Case 1 is considered the basic method to create a line because
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it provides the line database directly with the two endpoints. This case 4y,
others usually result in generating the endpoints from the user input e
given data, as discussed below.

To develop the line equation for this case, consider a general point p on
the line at a distance L from P,. The vector equation of the line become,
(see triangle OP | P)

P=F1+Lfl, —eaZ I, £ 0o (4]?}

and L is given by
L is the parameter in Eq. (4.17). Thus, the tangent vector is n.

Once the user inputs 131. i and L, the point P is calculated using
Eq. (4.17) and the line has the two endpoints P| and P with u values of g
and 1 as discussed in case 1. 3

The following examples show how parametric equations of various lipe

forms can be developed. The examples relate to the most common lipe
commands offered by CAD/CAM software.

(4.18)

e
¥y

z
Fig.4.16 Line Passing Through P, in Direction n

rE:lgample E i.ﬁ’ Find the equations and endpoints of two lines, one horizontal
and the other vertical. Each line begins at and passes through a given point and is
clipped by another given point.

Solution Horizontal and vertical lines are usually defined in reference to the current

WCS axes. Horizontal lines are parallel to the X axis and vertical lines are parallel to the
¥ axis. Figure 4.17 shows a typical user working environment where the WS has a
different orientation from the MCS. In this case, the WCS is equivalent to the coordinate
system used to develop the line equations. Once the endpoints are caleulated from

these equations with respect to the WCS, they are transformed to the MCS before the
line display or storage. . .
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'4.6.1 Hermite Cubic Splines

parametric 5]_:||in_n curves are defined as piecewise olynomial cu i “ertai
order of continuity. A polynomial of poly ial curves with a certain

degree N has continuit ivati
: . R ; y of derivatives of order
(N - 1). Parametric Lﬁlhli? i-:phn-:r. are used to interpolate to given data, not to design
free-form curves as Sezier and B-spline curves do. Splines draw their name from
the traditional draftsman’s ool calleg

_ VST French curves or splines.” The Hermite
form of a l:].lhlc spline is determined by defining positions and tangent vectors at
the data points.

gystem of the spline and is related to the M
ag discussed in Chap. 3.

The parametric cubic spline curve (or cubie spline for short) connects two data
(end) points and utilizes a cubic equation, Therefore, four conditions are required
to determine the coefficients of the equation. When these are the positions of the
two endpoints and the two tangent vectors at the points, a Hermite cubic spline
results. Thus the Hermite spline is considered as one form of the general parametric
cubic spline. The reader is encouraged to extend the forthcoming development of
the Hermite cubic spline to a cubic spline defined by four given data points. The
parametric equation of a cubic spline segment is given by

3
P = 3 Cu', 0<sus<l (4.74)
i=0

where u is the parameter and C; are the polynomial (also called algebraic)
coefficients. In scalar form this equation is written as

x(u) = C3u + Coa® + CLu + Cox
Y() = C3p8 + Cuu® + Cpyu + Cy, (4.75)
2(1) = Cy i’ + Cppi® + C e + G,

In an expanded vector form, Eq. (4.74) can be written as

P)=Cyuw’ + Cou* + Cou + C, (4.76)
This equation can also be written in a matrix form as :
P(uw) = U'C (4.77)

where U= [1”" & u1]" and C = [C; C, C, C]". C is called the coefficients vector.

The tangent vector to the curve at any point is given by differentiating Eq. (4.74)
with respect to u to give

3
P)= Y Ciu'™', 0Susl (4.78)
r={
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In order to find the coefficients C;, consider the cubic spline curvg‘w{.rfu—. the twy
endpoints Py and P, shown in Fig. 4.40. Applying the bqundm conditions (P, p
at u = 0 and P,, P', at v = 1), Egs. (4.74) and (4.78) give

]

Pu$ cu
Fﬂ= C, :
P,=C;+C + C,+Cy (4.79)

P, =3C;+2C,+ C,
Solving these four equations simultaneously for the coefficients gives
Cyp=Py
C,=F, (4.80)
- 5= 3P —Py) - 2Py —P') :
C;=2F,— P+ P+ P,
Subsﬁtuting Egs. (4.80) into Eq. (4.76) and rearranging gives
P(i) = (i — 318 + 1Py + (-2 + )P,
e -2+ O+ (1 =), O0=u<] (4.81)
P,. P,, P’;and P’, are called geometric coefficients. The tangent-vector becomes
P’(1) = (61° — 61)Pg + (61 + 61)P,
+ (3 —du+ 1P+ B 210, 0=su=1 (4.82)

The functions of 1 in Egs. (4.81) and (4.82) are called blending functions. The first
two functions blend P, and P, and the second two blend P’y and P’; to produce the
left-hand side in each equation.
-Equaﬁ;ign‘j[fi._ﬂ:l}. can be written in a matrix form as
. P@=UMZV, 0=su<] - (4.83)

y¥ai .
P
Priu=1)

=3

z
Fig. 4.40 Hermite Cubic Spline Curve
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where [My] is the Hermite matrix

A T , T
{or. Both are given by nd Vis the geometry (or boundary conditions)

yiec
(% =3 3
=3 8 -=9. &
Myl =
o 0 .~ (4.84)
|1 0 0 0
V=@, P, P, P (4.85)
comparing Eqs. (4.77} and (4.83) show that C = M4V or V = [M,]”" C where
0 0 0 1]
RN Sl |
M =
[ ] B o 1 b (4.86)
3 2 1 D]
gimilarly, Eq. (4.B2) can be written as
P'(u) = UM, )"V (4.87)
where [My]" is given by
R S o R + 1
6 —6 3 3
Myl =
L¥n -6 6 —4 -2 et
s e R

Equation (4.81) describes the cubic spline curve in terms of its two end-points
~ and their tangent vectors. The equation shows that the curve passes through the
endpoints (¢ = 0 and 1). It also shows that the curve’s shape can be controlled by
changing its endpoints or its tangent vectors. If the two endpoints Py and P, are
fixed in space, the designer can control the shape of the spline by changing either
the magnitudes or the directions of the tangent vectors Fﬂ and P’,. The change of
both the magnitudes and the directions is, of course, permissible. However, for
planar splines tangent vectors can be replaced by slopes. In this case, a default
value, say one, for the lengths of the tangent vectors might be assumed by the
software to enable Eq. (4.81) to be used, For example, if the slope at Py, is given as
30°, then P’ becomes [cos 30 sin 30 0]. It is obvious that the slope angle and the
components of P, are given relative to the axes of the WCS that is active at the
time of creating the spline curve.

Equation (4.81) can also be used to display or plot the spline. Points can be
generated on the spline for different values of w between 0 and 1. These points are
then transformed to the MCS for display or plotting purposes.

Equation {4:81) is for one cubic spline segment. It can be generalized for any
two adjacent spline segments of a spline curve that are to fit a given number of data
points, This introduces the problem of blending or joining cubic spline segments
which can be stated as follows. Given a set of n points Py, Py, ..., P,,_, and the twao
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4.41) connect the points with a cubic spling

- is connectin ;
curve. The spline curve is created as a blend of spline segmen 2 the ggy

; at the inte i

ot in oy i Tt s 11 el
. s shown 1n E4q. 15 : "

points P, through P, _ , are needed as \tinuity of curvature at these pojp,

To eliminate the need for these vectors, the contin liminating P, betwee

can be imposed. To illustrate the procedure, o8 s.hlrf];l.‘:r.‘“ﬂ chnr EUWHIUII'E cuntizrmlufzhﬂ
first two segments that connect points Po, Py anc £z Iy
between the first two segments, we can wnie

F"'(H[ =1)= P (t, = 0) {4,'&9}

end tangent vectors P’y and P, _ , (Fig.

Spline s:g;mcnlﬂ7

X
Fig. 4.41 Hermite Cubic Spline Curve

where the subscripts of i refer to the segment number. Differentiating Eq. (4.82)
and using the result with Eq. (4.89), we obtain

P,=—10GP,+P;-3P; + ™. (4.90)

For more than two segments, a matrix equation can result from repeating this
procedure, which can be solved for the intermediate tangent vectors in terms of the
data points and the two end tangent vectors Py and P’ _; Thus, the geometric
information of a cubic spline database consists of the set of the data points and the
two end tangent vectors.

The use of the cubic splines in design applications is not very popular compared
to Bezier or B-spline curves. The control of the curve is not very obvious from the
input data due to its global control characteristics. For example, changing the position
of a data point or an end slope changes the entire shape of the spline which does not
provide the intuitive feel required for design, In addition, the order of the curve is
always constant (cubic) regardless of the number of data points. In order to increase
the flexibility of the curve, more points must be input, thus creating more splines
which are all still of cubic order. Figure 4.42 shows the control aspects of the cubic
spline curve,
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{a) Change of datn points

{#) Change of end slopes
Fig. 4.42  Control of Cubic Spline Curve

= EIEE 4.18  What shape of a cubic spline curve results if:
h;::.l'ri'-i‘nsri-rl =Py?

) Po=P1-P1=—P07

jution This example illustrates how (o create a closed curve using cubic splines.
Solt

sider only one segment in this example. Therefore the two endpoints Py, and P,
f;“ always identical.

@) If we substitute the given end conditions into Eqs. (4.81) and (4.82),
- “ P(e) = (20 — 302 + i) + Py
= P'(1) = (617 — 6u + )P,
This spline passes by Py at u = 0, L, 1. Figure 4:43a shows the curve for
P,=[0 O 01" and aslope of 45° thatis, P’y = [1//2  1/+/2 O], The

spline is a straight line in the cartesian space because the slope y/x' =y /'y is
constant. Pomnts 1, 2, 3, ..., 11 shown in the figure correspond to values of i

we get

102

45=

11

Fig. 443 Closed Cubic Spline Curves
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ely, Tl
The extreine

e spline has two extreme points 3 ;5 d

equal to 0, 0.1, 0.2....; | respectiV points can be oblained from,

g gt w = (0.2 and 0.8 respectively.
:Itnlviug the equation |"l'[rr“_l = 0.
(» Similar 1o () we obtain
Pi{u) = 2
P(u) = (— 20+ DE o 1 »pins the tangent to P’
This spline has an e:xln:g.e p?::.:::tr :!; FElg f:n,!};_gdjf; S it f”ﬂ:";d
then overlaps to become the tz ;;15“ e anslyals el etniiia R
=[00 ﬂ.]T and slopes Df"?’fj ::] m-n}’ E;;tgmpt to solve tl_'lis anmple on a CApy
Eﬂ:;i?cgfﬁdiﬁnﬁ;m the results using the “verify” command.

(—u* + )Py Py

4.6.2 Bezier Curves d on interpolation techni

z . i3 baszed on 1inierpoia cChnniques
" . 4 the vious section are ! . :
Cubic splines fhsc';fgﬂd o e techniques pass through the given points. Anothe
Curves resulting irom L& n techniques which produce curve;

: i se approximatio .
alternative to create CUrves Is [0 use ibP Instead, these points are used g

1 ints.
<5 through the given data pol ‘ '  used
S:::;:nf]; 31?:[5?:-11;:3 of 1:!*us:fu1 resulting curves. Most often, approximation techniques are

i i niques in curve design due to the added ‘ﬂexibjm}.

Enm;ifzﬁr;e:dzfzg;r;tlﬂiﬁzli:ljgzl:’;‘l:grﬂiiq:lr:d by the former. Bezier and B-spline cupvesy
imation technigues.

mﬁ:ﬂ?ﬁ-ﬁ ﬁdﬂ:uﬁﬁcfﬂx;ﬂ credited to P. Bezim: of Ehe Ffench car firm Regie
Rﬂnauit who developed (about 1962) and used them in his software s-_»,irstﬂm called
UNISURF which has been used by designers to define the outer pane 51 of severa)
Renault cars. These curves, known as Bezier curves, we.re1alsc- mi:leEndtn}]}.
developed by P. DeCasteljau of the French car :lzumpzmy Citroen (about 1959)
which used it as part of its CAD system. The Bezier UNISURF system was soon
published in the literature: this is the reason that the curves now bear Bezier's

ame. : a
" As its mathematics show shortly, the major differences between the Bezier curve

and the cubic spline curve are: : _ 1 _

]. The shape of Bezier curve is controlled by its defining points only. First
derivatives - ¢ not used in the curve development as in the case of the cubic
spline. This allows the designer a much better feel for the relationship between
input (points) and output (curve).

2. The order or the degree of Bezier curve is variable and is related to the
number of points defining it; #n + 1 points define an nth degree curve which
permits higher-order continuity. This is not the case for cubic splines where
the degree is always cubic for a spline segment,

3. The Bezier curve is smoother than the cubic spline because it has higher-
order derivatives.

The Bezier curve is defined in terms of the locations of n + 1 points. These
points are called data or control points. They form the vertices of what is called the
control or Bezier characteristic polygon which uniquely defines the curve shape as
shown in Fig. 4.44. Only the first and the last control points or vertices of the
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plygon actually lie on the curve. The other vertices define the order, derivatives
qnd shape of the STV The curve is also always tangent to the first and last polygon
gegments. In ffd'-'ht"-"-*": the curve shape tends 1o follow the polygon shape. These
& observations ShUL‘I_IEl enable the userto skeich or predict the curve shape once

irs control pﬂ_iﬂl-‘i are given as ?llustrﬂtcd in Fig. 4.45, The figure shows that the
order of defining the control points changes the pol yvegan definition which changes

the resulting curve shape consequently. The arrow depicted on each curve shows
sts Pﬂ_mmgn'i zation direction.

£y Control points {vertices)
-===== Characteristic polygon

Fig. 4.44 Cubic Bezier Curve (Nomenclature)

e e

.

a8

Pl]_-l-FlI ““““““““ "P]

Py, Ps

Fig. 4.45 Cubic Bezier Curves for Various Control Poinis
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points, the Bezier curve is defined by the

Mathematically, for n + 1 control
following polynomial of degree m:

P{”] = i F,‘ H,; ”':H}. D=u= 1

i=0

f‘l.‘:}]}

e and P, is a control point. B, , El.l'i3+thc Bemsteip
has a Bernstein basis. The Bemstein polynomig)
the Bezier curve and 15 given by

(4.92)

where P(u) is any point onthe curv

polynomials. Thus, the Bezier curve

serves as the blending or basis function for )
B. () = C(n, Hu'(l — w)"

where C(n, i) is the binomial coefficient
; rn! :
Cin, i) = m | I (4.93)
Uﬁﬁzing Eqs. {4.92) and [4.9:3] and observing that C(rn, 0) =.Cn, n) = |,
Eq. (4.91) can be expanded to give : ? .
P(u) = Py(l — u)" + PyCln, 1)ue(1 ~ )t~ + Py Cn, Du™(1 — u)
= +-“+F”_]C{ﬂ,ﬂ~1}n”"1{l—H]+i_[',,u"* 0<usl (4.94)

The characteristics of the Bezier curve are based on the properties of the Bemnsteip

polynomials and can be summarized as follows: - =
1. The curve interpolates the first and last control points; that is, it passes through
P, and P, if we substitute ¢ = 0 and 1 in Eq. (4.94). =

2. The curve is tangent to the first and last segments of the characteristic polygon,
Using Eqgs. (4.91) and (4.92), the rth derivatives at the starting and ending

points are given by respectively:

- i r : : T

PO = —=T1 =1) ='e(r, DP, ' 4.

(0) (H-J‘]T§ (-1) f_ 0P, (4.95)
e e i -
P(l) = — rﬂé (-1)C(r, DP, _; (4.96)
Therefore, the first deri.vative:s at the endpoints are

P'(0) = n(P; - Pp) - (4.97)
PO =nP.—P,_,) (4.98)

where (Py — Py) and (P, — P, _ ;) define the first and last segments of the
curve polygon. Similarly, it can be shown that the second derivative at P, is
fiﬂ[ﬂrlntm?:ﬂ by Py, P, and P;; or, in general, the rth derivative at an E:ndpﬂt}nr
15 determined by its r neighboring vertices.

3. The curve is symmetric with respect to u and (1 — ). This means that the
sequence of control points defining the curve can be reversed without change
of the curve shape: that is, reversing the direction of parametrization :mia
not change tht_a curve shape. This can be achieved by substituting 1 —n=p ir-1
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Eq. (4.94) and noticing that C(n, ) = Car, 1 - i). This is a result of the fact
{hat 8 (1) and B, _;, (10} are symmetric ir they are plotted as functions of
. .

4 The ilﬂE[’II_I{‘.l]F.’glllL'lIl” ]_'1-'51!:,.?“ u-n:liul B ata) -Was a miaktnen vilie of
cim, i) ':-E-I'rl'l}' {I =i l'.l"n"i‘} occurrimg al ¢ = i/ which can be obtained from the
equation d(5; wMdu = 0. This implies that each control point is most
influential on the curve shape at u = i/n. For example, for a cubic Bezier
curve, Py, Py, o and Py are most influential when = 0, 4, 2 and |
respectively. Therefore, each control point is weighed by its blending function
for each « value.

5. Thecurve shape can b-r: modified by either changing one or more vertices of
its polygon or by keeping the polygon fixed and specifying multiple coincident
points at a vertex, as :':‘rht‘-wn in Fig. 4.46. In Fig. 4.46a, the vertex P, is
pulled to the new position ffg and in Fig. 4.46b, P, is assigned a multiplicity
K. The higher the multiplicity, the more the curve is pulled toward P

6. A closed Bezier curve can simply be generated by closing its characteristic
polygon or choosing Py and P, to be coincident. Figure 4.45 shows examples
of closed curves.

2. For any valid value of u, the sum of the B, , functions associated with the
control points is always equal to unity for any degree of Bezier curve. This
fact can be used to check numerical computations and software developments.

Thus far, only one Bezier curve segment is considered. In practical applications,

the need may arise to deal with composite curves where various curve segments
are blended or joined together. In these applications maintaining continuity of
various orders between the segments might be desired. Figure 4.47 shows two

Fy

(h) Specifying multiple coincident points at a vertex
Fig. 4.46 Modifications of Cubic Bezier Curve
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Fig. 4.47 Blending Bezier Curve Segments

curve segments defined by the two sets of points Py, Py, Py, Pyand Py, P, P, p &
Py. To achieve a zero-order (C®) continuity, it is sufficient to make one of the end
control points of the segments common, e.g., P, in Fig. 4.47a. To achieve a firs.
order (C') contin uity, the end slope of one segment must equal the starting slope of
the next segment; that is, the corresponding tangent vectors are related 1o each
other by a constant. This condition requires that the last segment of the first polygon
and the first segment of the second polygon form a straight line. With regards 1
Fig. 4.47b, the three points P;, P4 and P; must be collinear. Utilizing Eqs. (4.97)
and (5.98), we can write -

4
Py—Py= 3 (Ps —P,) (4.99)

A most desirable feature for any curve defined by a polygon such as the Bezier
curve is the convex hull property. This property relates the curve to its characteristic*
polygon. This is what guarantees that incremental changes in control point positions
produce intuitive geometric changes. A curve is said to have the convex hull property
if it lies entirely within the convex hull defined by the pol ygon vertices. In a plane,
the convex hull is a closed polygon and in three dimensions it is a polyhedron. The
shaded area shown in Fig. 4.48 defines the convex hull of a Bezier curve. The hull
is formed by connecting the vertices of the characteristic polygon.
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Fig. 448 The Convex Hull of a Bezier Curve

Curves that pOSSEss the convex hull property enjoy some important consequences.
[fthe polygon defining a curve segment degenerates to a straight line, the resulting
=nt must therefore be linear. Thus a Bezier curve may have locally linear
ments embedded in it, which is a useful design feature. Also, the size of the
~OnVEX hull is an upper bound on "h.ﬂ Fim of the curve itself; that is, the curve
glways lies ins] ..:le its convex hull. This is a useful property for graphics functions
cuch as displaying or clipping the curve. For example, instead of testing the curve
itself for clipping, its convex hull is tested first and only if it intersects the display
window boundaries should the curve itself be. examined. A third consequence of
the convex hull property is that the curve never oscillates wildly away from its
defining control points because the curve is guaranteed to lie within its CONVEX
hu”Fm_ﬂ'l_ 4 software point of view, the database of a Bezier curve includes the
coordinates of the control points defining its polygon stored in the same order as
input by the user. Other information which may obviously be stored include layer,
color, name, font and line width of the curve.

While a Bezier curve seems superior to a cubic spline curve, it still has some
disadvantages. First, the curve does not pass through the control points which may
ke inconvenient to some designers. Second, the curve lacks local control. It only
has the global control nature. If one control point is changed, the whole curve

changes. Therefore, the designer cannot selectively change parts of the curve.

_HJEEJIZ!.B The coordinates of four control points relative to a current
WCS are given by e
P,=[2201, P;=[230], P,=[330]", and P,=[3 2 0]"
Find the equation of the resulting Bezier curve. Also find points on the curve for

u=0, 4, 4, 3 and 1.

Solution Egquation (4.91) gives

P)=PyBy 3+ P B) 3+ P;B; 3+ P3B; 5 Ususl
Using Egs. (4.92) and (4.93), the above equation becomes
P(u) = Py(l — w)® + 3P, u(l — u)* + 3P, Wl —w)+ Py, 0su<l
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Py(2, 3)4mmnmmmmmmmmmmmmmmmmmm ===t P2(3,3)

T s o
CER R T E T T T T R A

L P2

Fig. 4.49 Bezier Curve and Generated Points

Substituting the ¥ values into this equation gives F(0) = P = [220]7
PO)=Py=[2 2 0]

1 27 27 o] 1 ;,-
g 1 = = P.+ —P,=[2.156 2563 0
qu) P,+ — P, + g Yo Bl ]
(1 1 3 3 1 T
Pﬁ] BP“+EP]+EP2+E s = . 1
3 | 9 27 27
= e i = P,+ —P;=[2.844 256 r
Pkd] P, + P, + 5+ s =1 3 0]
P()=P,=[3 2 OfF S

3
Observe that z B; 3 is always equal to unity for any u value. Figure 4.49 shows the
{0} 9 .

curve and the points.

EE&E&!E‘E%@ A cubic spline curve iz defined by the equation

P) = Csu’ + C218 + CLu+Cy, 0<u<l (4.100

where ij ":3.: C]: and Cﬂ are the pﬂl}"l‘lﬁmja_l l.""',ﬂcH"i Eiﬂnls I_-S'EE E'T.]- {4 .?ﬁ}]. Assumi
thes:_e: cocfficients are known, find the four control points that define an identical
Bezier curve. e 8

Solution The Bczie-:;'.t.‘.:cii..:_aﬁnﬁ is

P(u) =P
where e 0Bo, 3+ P, By 3+ P, B, 3+ P, B, 4 (4.101)

— 2 3 :
-51_-3—-3.!1 — 3 ‘;_-__ : HEE="3

Substituting all these functions into Eq (4.101) and rearranging, we obtain
P(u) = (-Py+ 3P, - 3P, + Py’ + (3P, — 6P, + 3P,)u?

=+ {_31:.“ -+ 31.1}” + P“ {4.1{]2],
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Comparing the coclficients of Bqs, (4,100) and (4 102) gi
; 102) gives
Py=C,
P C
1 3 =1 + C,

1
P'1 = = C
To check tl 3030 r g,
Note: 1o check these results, observe tha th i
5 , _ ¢ Bezier curve passes through points P,
and Py where u = 0 and 1 respectively. These two poinis are obtai fd 1?1- B 2
(4.100) for the same value of u, e L

4.63 B-Spline Curves

B-spline curves provide another effective method, besides that of Bezier, of
generating curves defined by polygons. In fact, B-spline curves are the proper :Emd

powerful generalization of Bezier curves. In addition to sharing most of the

characteristics of Bezier curves they enjoy some other unique advantages. They
Fmv}de local cunujnl of the curve shape as opposed to global control by u:sing a
special set of blending functions that provide local influence. They also provide the
ability to add control points without increasin g the degree of the l:urw:].j

B-spline curves have the ability to interpolate or approximate a set of given
dﬂ[ﬂpﬂlntﬁa It'i_tm'pﬂlatic-n 15 useful in diﬂpla}"lng desi EN Or Eﬂgi“ﬁ&ﬁﬂg results such
as stress or displacement distribution in a part while approximation is good to
design free-form curves. Interpolation is also useful if the designer has measured

- data points in hand that must lie on thé resulting curve. This section covers only B-
spline curves.as used for approximation.

In contrast to Bezier curves, the theory of B-spline curves separates the degree
of the resulting curve from the number of the given control points. While four
control points can always produce a cubic Bezier curve, they can generate a linear,
quadratic, or cubic B-spline curve. This flexibility in the degree of the resulting
curve is achieved by choosing the basis (blending) functions of B-spline curves
with an additional degree of freedom that does not exist in Bernstein polynomials.
These basis functions are the B-splines—thus the name B-spline curves,

Similar to Bezier curves, the B-spline curve defined by n + 1 control points P,
is given by

Pw) =Y PN ), 0Susuy, (4.103)
i=0

N, (u) are the B-spline functions. Thus B-spline curves have a B-spline basis,
The control points (sometimes called deBoor points) form the vertices of the control
or deBoor polygon. There are two major differences between Eqs. (4.103) and
(4.91). First, the parameter k controls the degree (& — 1) of the resulting B-spline
curve and is usually independent of the number of control points except as restricted
as shown below. Second, the maximum limit of the parameter u is no longer unity
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i chosen arbitrarily for Bezier curves. The B-spline functions haye the
as it was so i
following properties:

Fi
Partition of unity: Z N; () =1
i=f

FPositivity: N; (u) 20 : ]
- = if v [ee, t; 444
Local support: N u)=0 i i . ;
Cnntjnui]:y- N; (u) is (k- 2) times continuously differentiable
: Q

The first property ensures that the relationship between '-he_I‘fE W:ﬂﬂ':}d :jts defining
control points is invariant under affine transformations. The Ch ”I : Property
guarantees that the curve segment lies completely within the Ef:'nrv?lx ullof P, The
third property indicates that each segment of a B-spline curve is in uﬂlmfed by only
k control points or each control point affects only & curve segments, It is HSEfUI_ to
notice that the Bernstein polynomial, 8; ,(«), has the same first two Properties
mentioned above,

The B-spline function also has the property of recutsion which is defineq as

Ny o)
Nflk{nj}z,(u_u‘.} N.',k—rl(“} k=1

(g, —u) - (4104
Hiyp _ — U Hipp — Uy

where

g S TR TR
N, o {1 i s S, (4.105)
) 0, otherwise
Choose 0/0 = 0 if the denominators in E
shows thart N;. 1 15 a unit step function,
Because N, 1 is constant for k = 1, a general value o
in u of degree (k = 1) [see Eq. (4.104)] and therefo

g. (4.104) become zero. Equation (4.] 05)

f k producesa polynomig]
T€ a curve of order k ang

0, Jj<k
W= ji—-k+1, k=j=n (4.106)

R—k+2,. japn
where

O=j<sn4+i | (4.107)
and the range of i is Ly
ti-fs Osusn_p42 (4.108)
REIﬂtit}nH-.lﬂ'?)Rht}ws that (rz + k 4+ 1) knots are n

curve defined by (n + 1) control
range of u with unjt separation
(coincident) knots for certain v

: eeded 1o create 3 (k—1) degree
Points. These knots are evenly spaced over the

(Aw = 1) between honcoincident knots, Multiple
alues of may exist,
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a1a the degree of the re: : . '
‘vthlllﬁ‘lﬁ:t::r HEE[S'. given hy "‘]"31:_:1"5 B_SPIE“L& Curve is controlled by k, tt
l_lll-"-P‘ L ﬂ-]_ o .1|:4.1{}E:| l“'ﬁplicﬁ ﬂ_‘n“_ - : _'_':I'r s e range of
.;icll!“““md by the number of the given contral el 1ere 15 a limit on & that is

in Eq. (4.108 : 5. This limit is found iri
upper hmmd}" q } to be preater ound by requiring
::Ehﬂﬁ-ulid. that is, greater than the lower bound for the i range

= 209

.. - n-k+2>0 :
is relntion shows that a minimum of two, three and fou | (4.109)
(o define & lincar. quadratic and cubic B-spline curve T;;ﬂ"‘ff’i points are required
The characteristics of B-spline curves that are i d[;ili:tweiy. ‘
Hfﬂﬂuwg:] i s 5120 can be summarized
1. The local control of the curve can be achieved h =
i : . ¥ changing th it
control p‘;’“lis_}‘ using multiple control points by Dlacginggscseﬁzfmﬂqnf s
the same location, or by choosing a different degree (k — 1). As e
earlier, changing one control point affects . As mentioned

: only &k se 2 ]
the local control for a cubic B-spline curve by mﬂfiﬁﬁf.lglgfﬂitﬁ%ihﬁh
3 . &

four curve segments surrounding P; change only
2. A nonperiodic B-spline curve passes throu gh the :Fust and |
: ast control poi
P, and P, ., and is tangent to the first (P, — Pg) and last (P P'm;t?
n+l " *n

ents of the control imi :
ﬁgﬂ; o polygon, similar to the Bezier curve, as shown in

_._---.——-—"4
A

P4

Fig. 4.50 Local Control of B-spline Curoes

3. Increasing the degree of the curve tightens it. In general, the less the degree,
the closer the curve gets to the control points, as shown in Fig. 4.51. When
k=1, a zero-degree curve results. The curve then becomes the control points
themselves. When k = 2, the curve becomes the polygon segments themselves.

4. A second-degree curve is always tangent to the midpoints of all the internal
polygon segments (see Fig. 4.51). This is not the case for other degrees.
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k= & {quintic)
k= 4 (cubic)

*..\*;‘ k = 3 {(quadratic)
Py
k= 2 (lincar)

Fig. 4.51 Effect of the Degree of B-spline Curve on its Shape

5. If k equals the number of control points (1 + 1), then the resulting B_sp;
curve becomes a Bezier curve (see Fig. 4.52). In this case the range Ef“‘!
becomes zero to one [see Eq. (4.108)] as expected. "

6. Multiple control points induce regions of high curvature of a B-spline cyp,
This is useful when creating sharp cOrners in the curve (sec Fig. 4.53), 13,
effect is equivalent to saying that the curve is pulled more towards a C{}n[r;:;:
point by increasing its multiplicity.

7 Increasing the degree of the curve makes it more difficult to contro] apg
calculate accurately. Therefore, a cubic B-spline is sufficient for a large

number of applications.

(&) No multiple control points

-FJsPdr-Fi
-

-

B-spline curve

(k= 6) X

' s — Bezier curve : R
"'a ;F - 'h“'
W - e O -PEI
£y R

: (b}!v{yluplc control points

Fig. 4.52 Iﬁ’&?ﬂﬁ&i{{:ﬂ'—_ﬁpﬁne and Bezier-Curves

: "'I"'..-::‘ r
- N

82 Ty
-I iy
e
g b
R —
= 1
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Fo

One Point at Py
Two POInLs at Py
hrec points ar Py

Fig- 4.53 Multiple Control Point B-

—

spline Curves

Thus far, open or nonperiodic B-spline curves have been discussed. The same
heory €an be extended to cover closed or periodic B-spline curves. The only
gifference between open and closed curves is in the choice of the knots and the
pasic functions. Equations (4.106) to (4.108) determine the knots and the spacing
perween them for open curves. Closed curves utilize periodic B-spline functions as
their basis WIU:I knots at IL]'J.E- integers. These basis functions are cyclic translates of
5 single canonical Funcu::m with a period (interval) of k for support. For example,
for a-closed B-spline curve of order 2 (k =

: < Uk=12) or a degree 1 (k — 1), the basis
fanction is linear, has a nonzero value in the interval (0, 2) only and has a maximum
yalue of one at =1, as shown in Fig. 4.54. The knot vector in this case is [0 1 2].

Quadratic and cubic closed curves have quadratic and cubic basis functions with

jntervals of (0, 3) and (0, 4) and knot vectors of [0 1 2 3] and
1 2 3 4]respectively.

The closed B-spline curve of degree (k — 1) or order k defined by (n+ 1) control

paints is Eiven by Eq. (4.103) as the open curve. However, for closed curves
5. (4.104) to (4.108) become

N; o(u) = Np (=i +n+ 1) mod (n + 1))  (4.110)
Hj=j1 ﬂEjE?‘I"‘].

(4.111)
_ D<j=n+1 (4.112)
and the range of u is
- O<u<n+] (4.113)
The mod (n + 1) in Eq. (4.110) is the modulo function. It is defined as
_ A, A=<n
Amodn= {0, A=n (4.114)

remainder of A/fn, A>n

For example, 3.5 ﬁmd 6=3.5, 6 mod 6 =0 and 7 mod 6 = 1. The mod function
enables the periodic (cyclic) translation [mod (1 + 1)] of the canonical basis function

Ny, i Np, 4 is the same as for open curves and can be calculated using Eqgs. (4.104)
and (4.105).
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1}— N, 2

l =
S o Vo, 3
4 ‘u-!r s
| .
e 1
| 1 :
A A gt | -
o 05 1 B3 3% 3 1
(&) Quadratic function (& = 3)

() Cubic function (k= 4)
Fig. 4.54 Periodic B-spline Basis Functions

Like open curves, closed B-spline curves enjoy the properties of partitiop of
unity, positivity, local support and continuity. They also share the same
characteristics of the Open curves except that they do not pass throu gh the firg and
last control points and therefore are not tangent to the first and last Segments of the
control polygon. In representing closed curves, closed polygons are used where the
first and last control points are connected by a polygon segment. It should be noticed
that a closed B-spline curve can not be generated by simply using an open curye
with the first and last control points being the same (coincident). The resulting
curve is only € continuous, as shown in Fig.4.55. Only if the first and last segments
of the polygon are colinear does a C! continuous curve result as in a Bezier curve.

Based on the above th cory, the database of a B-spline curve includes the ty pe of
curve (open or closed), its orderk or degree (k- 1) and the coordinates of the
control points defining its polygon stored in the same order as input by the user.
Other information such as layer, color, name, font and line width of the eyrve may
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L T ———
i

(a) C continuity

By ! continuity
P, Coincident

Fig.-4.55 An Open B-spline Curve wipy Py and

solution This cubic spline has k= 4 and 5 =

_ 3. Eight knots are needed to calculate
the B-spline functions. Equation (4.106) gives

the knot vector
[uuH1"2“3”4”5“ﬁHTJ'ﬂE[l}Uﬂﬁl]ll]
The range of 1 [Eq. (4.108)] is 0 < » < 1. Equation (4.103) gives

Plu) =Py N, 4+ Py Ny 4 +Po N, 4+ P:Ny4. O=su=1 4.115)

To calculate the above B-spline functions, use Egs. (4.104) and (4.105) together
with the knot vector as follows;
1: =10

Ny 12Ny =N,y {ﬂ, elsewhere

l, 0=su=<l
i Bl 0, elsewhere

l, u=1
Wi =N =gy = 0, elsewhere

=(u- — Uy — ) — = =
Moo= (v =uo) Uy — Uy o) Wy — 1y 0 0
N 2.1 ulNy ) (—u)N,
= (1 — — & = P = — -
Nia=(u “) By — Uy =) Hy — i, 0 0
N N (1-1)N
MB — HE h‘-d = H3 '] 1
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B (1 - 10N, ,
N_'-!.i _N_'q" =Ny | +T————— =uN
) } _ +{H5—-‘H] e i 0 3,
Ny o= -up) o= s = Ma
N (1 =)V,
41 (g — 1) _'N_j'.’__ =(u—1) - a'—l = 5.1 =0
Ny o= (u=1y) S 6 te — Hs
Ve, Ney | @DNy Gwm,
s /A —H) — = =
N 2= (u—¥s) P + (uq 1y — thg 0 0
N 0 0
] No = L2 = e —del—u) s =0
HEEE{H—'HE {l g - u ,__"I
N (1—u)V
Ny 3= @—u) ots — & 1y — Uy 0 %1
N 2
2,2 22— uN, o+ (1 =Ny o =201 — Ny
B DR 2t (g — ) L &2 31=
Ny 3= (1 uz) My — Uy ©s lig — Uy
N
Ny 2 N2 oo ' ]_.i'i B
=i i — + — ) =Ny + Lt = uN,
Ny 3= (u 13) us — iy (1t g — by 0 3.1
N N
Na.2 i et} e By
~ Np,3 Mis. i oy
Nﬂ,4={u—-ﬂq'.i?3__uﬂ + (ug — 1) N =(1 —u)y N,
N N3, 3 2
Ny a= (1 —uy) o !_i‘] + (us — 1) 1ty =3u(l —u)" N3 4
N i "
Ny 4= (1 —it3) L i; + (ug — ) lig i:lg = 31 =Ny,
5
N N
Ny 4= (1 - 14) -“—i'—ir— + (17 — 1) ﬁ = g.-3'N3_|
: 6 — ¥

Substituting N, , into Eq. (4.115) gives
P(u) = [Py — 1)* + 3Py u(l — )? + 3P, (A — ) + P31’ IN,,, O<us<l
Subsututing ;Na. , into this equation gives the curve eguation as
Plu) = Pyl — u}j + 3P, u(l — u}i + 3P, r-rzl':i —u) + Py ua, 0= u<]
This equation is the same as the one for the Bezier curve in Example 4.19. Thus the

cubic B-spline curve defined by four control points is identical to the cubic Bezier

curve defined by the same points. This fact can be generalized for a (k — I)-degree
curve as mentioned earlier.
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Thnr,u_ nic R nh.ﬂ{:l'?ﬂliﬁ“?‘i ihat a'.lj'f_" worth

Ewﬂsuhﬁ-ﬂ]‘if_ltﬁ (iirkj :lfil:;ll'l}" B—RPHHE rl.ll'lﬂﬁﬂl'i Ni-. : cannol excecd {'” + k}. "I"his.. gj VES
a control o1 i ﬁ[r,-'-:f] = ‘ﬂ_ calculate NV, , 1n this cxample six functions of v, |, lve
of Ni. 2 and four of V.5 were needed such (hay (6 + 1) for the first, (5 + 2) for the

4 + 3) for the last a avs i
g:cﬂﬂd and ( JN e Ire always cqual 1o 7 (n + k). Second, whenever the
Ii]'lﬁts of i for any i 1 cqual, the range hﬂﬂﬂlmcﬁ one point.

mentioning here. First, the sum of the

mple = 4:22  Find the equation of a closed (periodic) B-spline curve defined

; I;;E;m: control points.

solution  This closed cubic spline has k = 4, n = 3, Using Eqs. (4.111) 1o (4'.1 13),
the knot vector [Hg Hy; Uz My wy]isthe integers[0 1 2 3 4] and the range

of 1is 0 < u = 4. Equation (4.103) gives the curve equation as
P()=PoNg 4+ Py N1 s+ Py N, , + P, Nyg 0=u<4 (4.116)
To calculate the above B-spline functions, use Eq. {(4.110) to obtain
No, 4(u) = Ny 4((4 + 4) mod 4)
Nj, 4() = Ny 4((1 + 3) mod 4)
Nz, 4t} = Np, 4((1e + 2) mod 4)
Ny a(u) =Ny ((w + 1) mod 4)

{n the above equations, Ny 4 on the right-hand side is the function for the open curve
and on the left-hand side is the periodic function for the closed curve. Substituting
these :q‘l.l-ﬂﬁl.'lﬂﬂ iﬂt‘L’l Eq. {4.] 16) we get

P(u) = P Np, 4((e + 4) mod 4) + Py Ny 4((u + 3) mod 4)
+ Py Ny 4 +2)mod 4) + P, Nog sllu+1)mod4), 0=u=4 (4.117

InEq. (4.117), the function N, 4 has various arguments, which can be found if specific
values of u are used. To find N, 4, similar calculations to the previous example 4.21
are pg[‘f[}_[‘tﬂ&d using the above knot vector as follows:

- - 1, O0=u=1l
'D.. elsewhere

o [b 1Su=2
hoc) 0, elsewhere

: N [l 2Sus3
B 0, elsewhere

N 1, 3<=u=<4
A 0, elsewhere
No.1 1.1
No, 2= (1 = up) —— + (U — 1) — =ulNg | + (2 —uwN;
Hp — Mg l'.-l!z —
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N“ Nz.l__{u_]}N +fq“!]N
S oot . sy u} ——— = Ly A= WY,
Ny 2= (u~uy) g — by 3 Wy — lig
oy _:' NI;I'_ “r (u _”) _-Nrj..j. ﬁ{ﬂ“z}wz‘l + E'I"I"_H}Na_ I
N211_{H‘_t‘2 ua—'“z 3 Hd-_uj :
Np 2 Ni,2 a1 & N o 1{3_
= (i — — o (Uy ) — Ty N, 5
Nﬂ,E (H Hﬂ} uz =5 3 7 — Uy 2 2

1
= 11-':[2”[}.] + ‘IE[H[E—H)-F{S—H]{H- 1}]NL= + E{:.}___u}zwlT

NI..E.

1 1
Ny 3= (u—uy) = E("_”N'rz 5{4_”}‘3"3,1

|
= %(H— 1)*N,.; + 11[':" =DE <+~ 2E— WM i+ 5{4_' HFNlI

! Ny, 3 1 1

My = Uy iy — My 3

I

= —:;.‘- (160N, 1 + 72 — ) + u(3 — w)(u — 1) + (4 —w)u - DN, ,

UG-+ @G- — DG —w) + @@= 2INy ) + (4 —w)n, |
or

No,a= %[HNGJ + (300 + 1267 — 120 + HN, | + Gu® - 240” + 60u — 44y, |
+ (1 + 120® — 48u + 64)N, 4]

Due to the non-zero values of the functions N, Tor various intervals of u, the above
cqualion can be written as

]EHE. ﬂ""_:HEF-.-i
%(-ﬁ!uﬁ +122% —12u + 4), l=su=<s2 i

Ny, 4e) = < 1 (4.118)
-{5«-{3113 —241* 4+ 60u —44), 2<y <3

1 =

E(—u3 +12u% =48k +64), 3=u<4
To c:_hc-:l_c the correctness of the above :ﬁi}':_rr;__:_s;inn of Ny, 4(u), one would expect to
obtain Fig. 4.54¢ if this function is plotied. Indeed, this figure is the plot of Ny, If

=01, 2 3 and 4 are substituted into this function, the corresponding values of
Ny, 4 that are shown in the figure are obtained.,
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Equations (4.117) and (4.118 together ¢
e 4 B-spline :_:urw: for display or plotting
i following points:

p(0) = Py Ny, 4(4 mod 4) + p, Ng, 4(3 mod 4)
+ Pa H'l.'l. 4(2 mod 4) + P3 N,lqi:[ mod 4)

= Pg Ny o(O) + P N, 4(3) + P2 Ng, o(2) + P3Ny 4(1)

an be used to evaluate points on the
Purposes. As an illustration, consider

1 2 1
= EPI_I- EP:‘F EI‘.3 )
P(0.5) = o No.4(0-2) + P, Np 4(3.5) + P2 N, 4(2.5) + P, Np, 4(1.5)
1 1 23 23
i — P — =E
P(1) = PoNo 4(1) + Py Ny ,(0) + P, No,4(3) + P3 No, 4(2)
1 1 2
i ot 6. 47 3 "3
P(2) = Po Np, 4(2) + Py Ny o (1) + P, No, 4(0) + P, N, 4(3) = %Pﬂ, + éP, + ]EPS
P(3) =Py No 4(3) + P, Ny (2) + P, N (1) + P3 Ny 4(0) = % P, + % P, + % P,
P(4) =Py No o(0) + P, No 43) + P, N, ,(2) + P, Ng 4(1) = % P, + i: P, + lﬁ P,

In the above calculations, notice the cyclic rotation of the Ny, 4 coefficients of the
control points for the various values of y excluding w = 0.5, Notice also the effect of
the canonical (symmetric) form of N, , on the coefficients of the control points. If the
u values are 0.5, 1.5, 2.5 and 3.5, or other values scparated by unity, a similar cyclic
rotation of the coefficients is expected, Finally, notice that P(0) and P(4) are equal,
which ensures obtaining a closed B-spline curve.

The theory of the B-spline has been extended further to allow more control of the
curve shape and continuity. For example, fspline (beta-spline)
(nu-spline) curves provide manipulation of the curve shape and maintai
continuity rather than its parametric continuity as provided by B-spline curves. The
Mfspline (sometimes called the spline in lension) curve is a generalization of the

upiform cubic B-spline curve. The fspline curve provides the designer with two
* additional parameters: the bias and the tension to control the shape of the curve.
Therefore, the control points and the degree of the Mspline curve can remain fixed
and yet the curve shape can be manipulated.

Although the F-spline curve is capable of applying tension at each contyol point,
its formulation as piecewise hyperbolic sines and cosines makes -its ‘computation
expensive. The v-spline curve is therefore developed as a piecewise polynomial
alternative to the spline in tension.

and -spline
nits geometrc
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4.6.4 Rational Curves

A rational curve is defined by the algebraic ratio ﬂj ?’WJb tf ﬁlh’ﬂmmmlﬂ While ,

nonrational curve [Eq. (4.103) gives an exufl]pl:t'-] e _thm: Pf-""}-'num]-a]

Rational curves draw their theories from projective gea@ﬂf]‘}’- ey are ’mlmi‘lan{

because of their invariance under projective u-ansﬁ.::mmtlﬂn, Ll‘.hai 15, the PeTspecyjy,

image of a rational curve is a rational curve. R:ai.mnﬂl B_-E?Jflif CL::"“?S' rationg] _

spline and S-spline curves, rational conic Seclions, rational cubics and Taliong
- .surfaces have been formulated. The most widely flﬁﬂd rational curves are NURgg
" (nonuniform rational B-splines). A brief description of rational B-spline Curveg i
~givenbelow. ’ ] -

“~_Thé formulation of rational curves requires the introduction of homogeneg,,
space and the homogeneous coordinates. This subject 1s covered in deaj) j,
Cha 13 [SE:G. E.E.j}- The hﬂn]ngﬁnﬂﬂl'ls spal::ﬂ is four-dimensional Space, A I-"-I'E'linq
in E° with coordinates (x, y, z) is represented in the hﬂmﬂge_:nﬂnu..s space by (he
coordinates (x*, y*, z*, ), where A is a scalar factor. The relationship betwee, the
-two types of coordinates is given by Eq. (8.59). ; S
.-~ A rational B-spline curve defined by n + 1 control points F;1s given by

ri
P(u) = z PR (), 0Susug,, (4.119)
i=0

R; (u) are the rational B-spline basis functions and are given by

ﬁ-”f,k(ﬂ} 5
i—p Py Ni i () @-120)

The above equation shows that R, () are a generalization of the nonrational basjs
functions N; ,(u). If we substitute h; = 1 in the equation, R; (i) = N, ,(u). The
rational basis functions R;  (u) have nearly all the analytic and geometric
characteristics of their nonrational B-spline counterparts. All the discussions covered
in Sec. 4.6.3 apply here. "

ThHe main difference between rational and nonrational B-spline curves is the
ability to use h; at each control point to control the behavior of the rational
B-splines (or rational curves in general). Thus, similarly to the knot vector, one
can define a homogeneous coordinate vector H=[h; hy h, hy... k] at the
control points Py, Py, ..., P, of the rational B-spline curve. The choice of the H
vector controls the behavior of the curve,

A rational B-spline is considered a unified representation that can define a variety
of curves and surfaces, The premise is that it can represent all wireframe, surface
and solid entities. This allows unification and conversion from one modeling
F&uhniqur.:: o another. Such an approach has some drawbacks, including the loss of
information on simple shapes. For example, if a circular cylinder (hole) is

. represented by a B-spline, some data on the specific curve type may be lost unless
it 1s carried along. Data including the fact that the part feature was a cylinder

would be useful to manufacturing to identify it as a hole to be drilled or bored
rather than a surface to be milled.

| RL ﬁ(ﬂ} =
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S T OFANALYTIC SURFACES

LR S, e T L R e e e T T s

This section covers the basics of the parametric equations of analytic surfaces
most often encountered in surface modeling and design. The background provideqd
. this section and the next one should enable users of CAD/CAM technology tq
realize the limitations of each surface available to them for modeling and design a4
well as cope with the documentation of surface commands.

The distinction between the WCS and MCS has been ignored in the developmeny
of the parametric equations of the various surfaces to avoid confusion. The
transformation between the two systems is obvious and has already been discussed
in Chap. 4. In addition, the terms “'surface” and “patch” are used interchangeab]
_in:x this chapter. However, in a more general sense a surface is considered the Supgrqe:i
since a surface can contain one or more patch. L
5.5.1 Plane Surface

The parametric equation of a plane can take different forms de i i

: pending on the
data. Edr'.-nsu_jﬂr first the case of a plane defined by three points Py, P; and %v?;
shown in Fig. 5.22. Assume that the point P defines ¥ = 0 and v = 0 andzthe
vectors (P, = P,) and (P, — P) define the « and v directions respectively. Assume

also that the domains for 4 and v are [0, 1]. Th iti
» L] e posifion vec :
the plane can be now written as . tor of any point P on

P, V) =Py +u(P, — P +v(P,—P;), 0<u<l,0<v<l (525
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2

Fig. 5.22 A Plane Patch Defined by Three Points
2 above Eqﬂﬂﬁﬂﬂ can be S22 as Lh.ﬂ biliﬂﬂﬂ_[‘
Egs. 54 and (5.5), the tangent vectors at point P
P, v} = P,—-P, PG, vV)=P,~ P,
and the surface normal is
" (P, — Py) % (P, — Pp)
» O=u=

[Py — Py =< (P, — .]}l u=l,0=v=1 (5.27)

whiﬂl is constant for any point on the plane. As for the curvature of the plane, itis

equal to ZEro [see Eq. {5:2{")] because all the second fundamental coefficients of
the plane are zeros [see Eq. (5.19)].

Another case of constructing a plane surface is when the surface passes through

a point Py and contains two directions defined by the unit vectors # and & as
shown in Fig. 5.23. Similar to the above case, the plane equation can be written as

P(H|v}=Pﬂ+IIL"E+ULH§' O<u=1.0<v<] (5.28)
This equation is also considered as the bilinear form of Eq. (5.17). The equation
assumes a plane of dimensions L, and L, that may be set to unity. :

The above two cases can be combined to provide the equation of a plane surface

that passes through two points Py and P, and is parallel to the unit vector #1 in this
case, We can write

form of Eq. (5.11). Utilizing

e

O=u<1,0=v=1 (5.26)

n(u, V) =

Py, v) =P+ (P, ~Py) +vL,¥, O0<u<l,0<v<] (5.29)
The last case to be considered is for a plane that passes through a point Pyand is

perpendicular to a given direction n. Figure. 5.24 shows this case. The vector i is
normal to any vector in the plane. Thus,

®-Pp- A =0 (5.30)
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Fig. -'5-23-;; A : Plane Patch Defined Fig. 5.24 A Plane Pa{ch Passing
by a Point and Two through Point P
Directions and Normal to R,

which is a nonparametric equation of the planc surfac.e. A parametric equation cap
be developed by using Eq. (5.30) to generate two pm‘nts on the surface which cap,
be used with P, in Eg. (5.25). Planes that are perpendmularr to the axes of a currepy
WCS are special cases of Eq. (5.30). For example, in the case of a plape
perpendicular to the X axis, fi is (1, 0, 0) and the planc equation is x = x,,

A database structure of a plane surface can be seen to include its unit normal §j |
a point on the plane Py and # and v axes defined in terms of the MCS coordinates,
For example, if a plane passes through the points Fy(0, 0, 0), P,(2, 0, 0) and
P40, 0, 2) as shown in Fig. 5.25, the verification of the plane surface entitieg
shows the entity is a plane passing through Py(0, 0, 0) and has a unit normal of
(0, — 1, 0). 1n addition, the i and v axes are defined by the coordinates (1, 0, 0) and
(0, 0, 1) respectively.

Z4

Py (2,0,0)

X
Fig. 5.25 Plane Surfoce Construction
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E’E HF“'!PIE = 53 Find the AN distance between a j'l[‘lil'ﬂ. in space and a

i:'mmf; surface. .

Solution The minimum distance between
endicular distance from the point onto the

is given by

a point and a plane is also the
plane, Let us assume the plane equation

P=P,+ur +vg, O=zu=s1,0sv<l (5.31)

This assumption can be made in the light of the database structure described above.

From Fig. 5.26, it is obvious that the perpendicular vector from point Q to the plane
is parallel to its normal n. Thus, we can write

FP=Q-Dia (5.32)
By using Eq. (5.31) in (5.32), we get

Pu.""“'i; "1'1-'; =Q_Df. {5;33}
Equation (5.33) can be rewritten in a matrix form as

Fx S N, I Xo — Xg
75 M=% (5.34)
, s n LD 25— 2o

where r,, ry and r, are the components of the unit vector . Similarly, the components
of the other vectors are given in Eq. (5.34). Solving Eq. (5.34) (see
Chap. 4) gives the normal distance D and u and v, which can give the point P.

r 2

Q o
/

/“
el 1

¥

o

£
- Fig..5.26 Minimum Distance between a Point and Plane Surface

=<1




266 CAD/CAM Theory and Practice

5.5.2 Ruled Surface +

A ruled surface is generated by joining corresponding pﬂm:s :Sﬂl:::] :EF;ﬂ?E “uveg
, i Fl L] " u [; HEI:

in Fig. 5.27. The main characteristic of a ruled SELLE . ; One

i::r}-l.i]éht line passing through the point P, v) and 1y1ng entirely mdthe s.urface, Tn

addition, every developable curface is a ruled surface. Cones an ‘:‘ﬂmﬂifrﬁ f

example; of ruled surfaces and the plane surface covered in Sec. 3.5.1 18 considerey

the simplest of all ruled surfaces.
o E'i,l.-r""

a
AT |

FPlu, v)

z
Fig. 5.27 Parametric Representation of a Ruled Surface

To develop the parametric equation of aruled surface, consider the ruling e =
joining points G, and Q; on the rails G(u) and Q(u) respectively. Using Eq. (5.11),
the equation of the ruling becomes

Plu, v) = G; + v(Q; — Gy} (5.35)
where v is the parameter along the ruling. Generalizing Eq. (5.35) for any ruling,
the parametric equation of a ruled surface defined by two rails is

P(u, v) = G(1) + v[Q(1) — G(u)] = (1 = v)G(u) + vQ(u),
D=u=1,0sv=1l (5.36)
Holding the u value constant in the above equation produces the rulings given by

E_q. (5.35) in the v direction of the surface, while holding the v value constant
yields curves in the 1 direction which are a linear blend of the rails. In'fact, G(u)
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and P, T -
) are Plu, O)a e L1ty 1) respectively, 3 T O :
and © 5 o greater the influence of G(u) and the less the i e P
287 ant curve. Similarly, the influence of Q. ¢ influence of Q(u) on the

= 5 when the v value approaches unity (see I:L:-;_z,n Ish?}rulec_l surface geometry
ince 4 on Fig- 5.27 and Eq. (5.35), it is now “b‘b‘iﬁuq‘wl:l}r digit
g 2

ils produces the undesirabl SR ing the wrong
f[I]E riul 2 c ru.l'l:."_[l surface o . .
ends © 2q. (5.36), together with Egs, (5.15), (5.]‘;; :;;‘}Eg‘g};ﬂ S

diliﬂ"' 1 § Eh . -

a0 qurface ¢an only alluw curvature in the i direction of the ﬁurfaCEWh th‘gﬂﬁ
Ll = % . v
the rails have curvatures. The surface curvature in the v direction {E]Tné

. , the
L s zero and thus a ruled surface cannot be used :

|llt'["lc;:‘::¢ curvatures in two directions. TYMIKE: sirfacs paichics
tha

553 gurface of Revolution

cotation of 8 planar curve an angle v about an axis of rotation cre '
Eﬁ _ 360) for each point on the curve whose center lies on the axis of ?;‘:;t?ﬂzl:r:{;
ase radius 7 (1) is variable, as shown in Fig. 5.28. The planar curve and the
circles are called the profile and parallels respectively while the various positions
of ﬂ}EPfﬂﬁm aqround the axis m..ﬁ called ﬂ:jeridians_

The planar curve and tht':_ axis ﬂii rotation form the plane of zero angle, that is,
y=0. To derive the ElamIFEU?E equm_mn of a surface of revolution, a local coordinate
system with a Z axis coincident with the axis of rotation is assumed as shown in
Fig. 5.28. This 1”‘331_ s}rs_.teml Shnf"’“ by the subscript L can be created as follows.
Choose the pe,rpendjf:ular c_hrt:-::tmn from the point i = 0 on the profile as the X
axis and the intersection point hﬂtw&f-..n X; and Z; as the origin of the local system.
The Y axis 18 automatically determined by the right-hand rule. Now, consider a

int G () = P, 0) on the profile that rotates an angle v about Z; when the profile
rotates the same angle. C_unsideﬁng the shaded triangle which is perpendicular to
the Z, aXis, the parametric equation of the surface of revolution can be written as

P(u, v) = r(u) cos v, + r.(u)sin vi, +z(1)n,,
O<su=1,0=sv=ldr (5.3

If we choose zp(u) = u for each point on the profile, Eq. (5.3’.-'}' gives the local
coordinates (xXr. YL, z;) of a point Pu, v) as [r () cos v, r(u) sin v, u]. The local
@rdinams are transformed to MICS coordinates before displaying the surface using
Egq.(3.3) where the rotation matrix is formed from fi,, fi, and n; and the position
of the origin of the local system is given by P, (see Fig. 5.28).

The database of a surface of revolution must include its profile, axis of rotation
and the angle of rotation as starting and ending angles. Whenever the user requests
the display of the surface with a mesh size m X n, the u range Is divided equall;,r
into (m — 1) divisions and m values of u are obtained. Similarly, thelv range is
divided equally into n values and Eq. (5.37) is used to generate points on the

surface.
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nm

Parallels

i # o=

Fig. 5.28 Parametric Representation of a Surface of Revolution

5.5.4 Tabulated Cylinder

A tabulated cylinder has been defined as a surface that results from translating 4
space planar curve along a given direction. It can also be defined as a surface thy,
is generated by moving a straight line (called generatnx) along a given planay
curve (called directrix). The straight line always stays parallel to a fixed givey
vector that defines the v direction of the cylinder as shown in Fig. 5.29. The planar
curve G{u) can be any wireframe entities. The position vector of any point Py, W)

on the surface can be written as
P(u, v) = G(u) + vii,, 0% 8 E Uy O VE Vg, (5.38)
From a user point of view, G(u) is the desired curve the user digitizes to form
the cylinder, v is the cylinder length and fi, is the cylinder axis. The representation

of G(u) is already available in the database at the time of creating it. The cylinder
length v is input in the form of lower and higher bounds where the difference
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rectrix. The user inputs the evlind

h is the unit vecior alon

of th{:. lower bound indicates
CF axis as two points
2 the axis.

the plane

g‘:'he di .tlml are used 1o

| getermin® fi, whic

Genermtrin

Ty,
/""g’
~Tu
Directrix
Plu, v)
i)
Pilu, o
]"JI; G(H} DiI:E-tl'iJ".
-
X

F4

Fig. 5.29 Parametric Representation of a Tabulated Cylinder
As seen from Eq. (5.38), the database of a tabulated cylinder includes its directrix,
the unit vector A, and the lower and upper bounds of the cylinder, The display of a
tabulated cylinder with a mesh m % n follows the

same approach as discussed with

—_—— -—

The arguments regarding the needs for synthetic curves discussed in Sec. 4.6 of
Chap. 4 apply here. Synthetic surfaces provide designers with better surface design
tools than analytic surfaces. Consider the design of blade surfaces in jet aircraft
engines. The design of these surfaces is usually based on aerodynamic and fluid-
flow simulations, often inc orporating thermal and mechanical stress deformation.
These simulations yield ordered sets of discrete sireamline points which must then
be connected accurately by surfaces. Any small deviation in these aerodynamic
surfaces can significantly degrade performance. Another example is the creation

of blending surfaces typically encountered in designing dies for injection molding
of plastic products.

-

h—_
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For continuity purposcs, the par

% i R n Lo cury *

ow in a similar form 1o i and rationa g L
pmsel',“cdgilmw blending offset, triangular, S‘-?Uili'_;“md :J:in s l'fsu"ld'“‘-'ﬂ- All
El_hp m:Fr'f .:h::e-i ur'c based on polynomial forms. Suriaces UsImng Orms such as
ese 51 : =

Fourier series are nol considered here. Although Fﬂ";"' Icr 5:;‘3]‘:‘;3&"“ i{iﬂh[:lmxim;ttg

mrm ».:E: gi;rq.:n sufficient conditions, the computations 1 M with them e
e furthan with polynomials. Therefore, they are not suited 10 genera] g, in
greater

CAD/CAM.

5.6.1 Hermite Bicubic Surface

The parametric bicubic surface patch connects four cﬂmi‘;m;]}m“m and utilizeg
a bicubic equation. Therefore, 16 vector conditions (or o SURIAE f’-;im}dmﬂns.} are
required to find the coefficients of the equation. When these coe tﬂiﬂnts are the
four comer data points, the eight tangent vectors at the cﬂm-.:r ﬂ[:mn S h-:rn at each
point in the 1 and v directions) and the four twist vectors & Eh“:ﬂmf':l Points, 4
Hermite bicubic surface patch results. The bicubic equation can be Writlen ag

Plu, v) = 23" \ Cﬁﬂfv-‘f., D=u<1,0=v=l (5.39)
i=0j=0
This equation can be expanded in s_imjlar wilys, as given ;bl'f Egs. (5.75).and (5.76),
Analogous to Eq. (5.77), the matrix form of Eg. (5.39) 1s
P(u, v) = UTICIV, 0su<1,0=vsl (5.40)
where U= o u 117, V= vt v 117 and the coefficient matrix [C] is given by

T

1= ¢ (5.41)
Cpy Coz Cu Coo

1n order to determine the coefficients C,, consider the patch shown in Fig. 5,18,
Applying the boundary conditions into Eq. (5.40), solving for the coefficients and
rearranging give the following final equation of a bicubic patch:

Plu, v) = UTTMIIBIIM]"V, 0<su<1,0<v<l (5.42)

where [M] is given by Eq. (4.84) and [B], the geometry or boundary condition
matrix, is

Py Py | Pogo Py ]
P, P,

[B] = |=tt---1% e L ol

: Plrﬂﬂ Pr-rﬂll leﬂD Pm-'l}l

.I_--PHIL'I PHH : I:H'l-"].ﬂ P

(5.43)

uvll

Ny
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.« [Blis partitioned as shown above to indicate the grouping of the similar
111rl““u-f'enntﬁﬁ‘"’“‘~"* It can also be written as
pont 1P | [R]
121 = [[_P;_ ﬂ;_l_;‘._]} (5.44)

2 | P, ] and [P, ] are the submatrices of the corner points, corner -
T [Pl m:S _corner v-tangent vectors and the corner twist vectors respectively.
nt Vet unt and twist vectors at any point on the surface are given by

an®
The VR8T P, (1. v) = UM, " [BIM 1TV (5.45)
P, (e, v) = U [M I[BIM, "V (5.46)
P, (e, ) = U IM ) [BIM 1TV (5.47)

w or [MH]" is given by Eq. (4.88).
the cubic spline, the bicubic form permits C' continuity from one

W .
simlIH:J'1 ‘:' next. The necessary two conditions are to have the same curves
ﬂ:‘m uity) and the same direction of the tangent vectors (C' continnity) across
Ec“cﬂﬂrmum edge between the two patches. The magnitude of the tangent vectors
¢ ot have to be the same. e
docs fore writing the continuity conditions in terms of the [B] matrix, let us expand
Be ;42} and (5.45) to (5.47) to see what influences the position and tangent
E::;Dliﬁ - Equations (5.42) and (5.45) to (5.47) give
¥ Tt

here (M)

(F ()]
: ' F.

P(u, v) = [F1()  Falu) F3(u). FaGo)lB] FEE:;

3

| Fy(v) |

(5.48)

[ F(v) ]

& 7yl 2
L1 B] £ ) (5.49)

| Fy )

P v) = [Gi(1) Ga(u) Gsu)

[ G (v) ]

G, (v)
= [F F, F. F Bl _*°
P, v) = [F(u) Fy(i) Fi(u) Fluw)lB] G (v) (5.50)

| G (V)
! GI (v) !

P (u, v) = [G{u) Gz[ 1) Ga{“} G a(u) [ B ;}2 E:; (5.51)
3

| Gy (v) ]
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where F|(I]=1‘:3"'3x2+1 —
FI{I] = -—2,1.’3 + sz 52]
F3{IJ=-‘:H'2IZ+"T’ g
Fa) =% =X
GI{.I] = —-ﬁ,‘r‘z 4+ Ox {5‘53}
Galx) = 32 —4x+ 1
Gx) = 3% — 2%
For i = 0 and u = 1 edges these equations become
" P(0, ) | [ F(v)
P(l,v) | _ Fa(v)
P“ I:'[h l-"} - [B] Fg{'!r’} (554}
-Phr{l! l-f]_ _F.-;[V}_
Si]'ﬂl]ﬂﬂj’. fory= ()] aﬂd V= 1 E’dgﬂﬁ we Can wﬁte_
" P(u,0) ] CFy(u) ]
P{ul 1} FE{H} A
= [B
P, (1, 0) [B] Fy(u) (5.54)
_PI..I{"I- I}_. _Fd.{u)_.

Equation (5.54) shows that the corner v-tangent and twist vectors affect the POsition
and tangent vectors respectively all along the u=0and u =1 edges except at y - 0
and 1 where F, and F, are both zero. )

To write the blending conditions for C' continuity between two patches, consider
the surface shown in Fig. 5.16. These conditions to connect patch 1 and patch, 3
along the v edges are

[P0, v}}pnlch - [P(1, uﬂpalr.‘:l‘t | Cncﬂnth‘m.ity
[P0, V}]palch - E[P”[l, P}]pmh I ! “:ﬂntiﬂuit}‘ {556}

‘where K is a constant, Equation (5 56) can be inte i
_ nt. : rpreted as blendin infin
number of F"m? sPIJnF. segments on each patch (each correspondin e tﬂg aa;:a::rtliig;m
;;.ralue} with E‘ continuity across the u edge. Utilizing Eq. (5.54), Eq. (5.56 ar
expressed in terms of tlhgz rows of the [B] matrix as shown inﬁ F'Lg_ 5 .3(}}'}:;2
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yson surface (also called the F-surface patch) is considered a bicubic
ne (ch with Z€10 twist veclors at the patch corners, as shown in this special

cface P

a [Blpaieh 1 [H_]Em:r. 2
e Pio Py L Py
..--""_'_-_-_-_
Py | P L
=
KPP K | KPP ia EP. .1
O ==
Pl.rilﬂ' Pﬂli Pn-vl:ﬂ Puvl1
" y
g Constrained Elements of Boundary Matrix [B] to Blend Two Bicubic
Fig- 5 Patches along a u Edge
531 Thus, the boundary matrix for the F-surface patch becomes
Fg-= - :
Pﬂﬂ I:'II:II I Pvl}ﬂ Ppm
I
B = | Do __Fu_ Pue Py sk
Poo Puy ! O 0 '
[ FPuo Pup| 0 0 |

Fig. 5.31 The F-surface Patch

surface is useful in design and machining applications. The tangent vectors at the
comer points can be approximated in terms of the corner positions using the direction
and the length of chord lines joining the corner points. Hence, the designer does not

B
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= s tations required t
. yant vecto! informs o R ul if a . Culay
‘&?vﬂllﬁ::FT:rlﬂl;rrﬁctcfs " o simplified- This 18 useful if L1 P Ao e g““‘al"ntj
e surface : |
. . «yrface path are very similar o those of
e

bic surface Lo an array of g
dly

nill the surface. 3

i lT;m characteristic oL L.'”mh“;lhl!.1 fit a bicu

cubic sphine- The pateh can be Us€ o lar prid The control of

points homomorphic © 27 71 R £ the input data. | tae resulijy

surface 18 global and is not ||1!mtl'-'ﬂ1}“ basec on d':’ g . In addition, th

o quimmﬂﬁl of tangent and twist vectors as l_npul_, ata does not fil very we] thE
ent becaise the intuitive feeling for such data is usually not ¢Ja e

dr,

design enviroi
degenerales 1o a i
i c L8,

ubic surface pateh
ed to twWo.
Fig. 5.18. Let us assume thay

se, t.hef corners Pog and Py, coin ic
es with respect 1o v are set (o .E[du
are equal to onc another, Fj e
all these values into Eq. {:;n:é];"

‘Example E 5.4 Show that a bic
if the four carner points of the patch are collaps
Solufion Consider {he surface patch shown in
v =1 edge coincides with the v = 0 edgc. In this ca
and so do the corners Py and P All the derivaliv
and the u-tangent vectors at the coincident cONErs
let us choose the yalue of v 10 equal 1. Substituling

we obtain
; PIJU Fuo o 0l
| P, P

P(u, 1) = [Fyu) Falu) Fa(ae) F ()] i 1o 0 0fl0

P,o Boo 0 0|0

B F'n L PH] 0 0O 0 0
Expanding the equation gives A =
PG, 1) = (2u° —3u? + Do + (2147 + 3P, + (1 — 207 + )P

K

+ {“3 - II'Eﬂmr-llliil
v variable in this equation gives

Dropping the reference 10 the
2
P+ = 21" + WP, + e
1l (1" —u }Pul

Plu) = {2:;3 ~ 3+ 1Py + (—?ua + 3u
which is identical to Eq. (4.81 i
Rich . (4.81) develo in C i
Kt R i (4_?45;_&1 n Chap. 4. Also, notice that substituting

Example = 5.5
‘Example = 5.5 Some i it is
] times it is useful to reformulate a given surfac
€ equation

in terms of the bicubic f i
& bicubic form given by Eq. (5.42). What is the equival
ivalent bicubic

patch to a plane given by Eq. (5.28)?
Solufion The - -
general procedure to achieve reformulation of a surf
surface form to a

-bicubic form is to
: use Eqg. (5.39) and its derivati
rivatives to find P{u
. v), P (u, v),

P, (u, v) and P,( :
| g My V1IN :
i (0 and _I} are Suhﬂjtilu:-z.;“?h of the Cﬁ cocfficients. IFf the bound
(elements of [8]) of the into the resulting expressions, the b iy e g
resulting general funr:[i;n];%cl:'l can be written in tc.nngh,; F t; oundary conditions
ke the form: ese coefficients. Th
cat] H E

an =f{ci'ﬁ

Tl ]

o :
here B, is an element of [£].
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If the equation ol o given surlace is compired (o By, (5.39), the corresponding sci
of € coetlicients are obtained which can in turn be substituted into the ahove equation
to anidc 1] of the equivalent bicubic pateh.

Let us apply the above general procedure 1o the plane given by Eq. (5.28).
comparing this equation to Fq. (5.39) gives

Con= Py

Cln = ]J" r

Fa

E“] = LI.' b
and all the other coefficients are zeros, The [B] matrix then becomes
f Fu Fu == l.'rg I .L-.,Sﬂ .L...S_
-~ - ~ | = -
[B] = 'E“_ *_I-_&‘_:I"_ -i.'.}n._ j__{_""_.r.q.‘ .Llﬁ _:_L_"f __{"f
L,F L7 00
| L Lk {0 e

= -

‘ExaﬂtpliEE 55 A biFubic surface patch passes through the ]:luj.nf_ Poo ﬂnf] has
i.ai'légn-l vectors at the point as P, and P, Show that the patch is planar if the
il defined as lincar functions of P, g and P,y and the corner
(wist veclors are Zeros.

sﬂ;'n.ﬁmt Figure 5.32 shows the above defined bicubic patch. The corner position
and tangent vectors can be defined by the following linear functions:

' E Py j 1 a B 1
Py 1 ay b
Py 1 ay By
Foo G ay b Ioo
Py [=|0 a5 bs || Foo (338
LY 0 a5 by || Fuoo
Foo 0 a; b
P, 0 ag b
P |0 as by
Substituting the above equation into Eq. (5.43) we get
[ Poo Pog +a; P pp + by P ! P, w0 agl, 00 + B3 P00
| Py+a P + B P00 Poo +@Puo0 +E:Fu00 1 a7 Puoy +b:Pi0 A5Puon H By
Lk TR S :
a, P00 + 8 Puoo agPuon +86F,00 ! 0 5 i}




d Practice
otiix [Hj is gi.‘r"ﬂn by Eq- (559} 15 planar, the

point on the palch:
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1

. ® s m
If the bicubie patch whost gu.:!ll.'lbll -
itten lor any

following coquation can be Wr
Ny - [P0 V)~ Pool = 0

(5.60)

int Py must be pcrpcndicular (o any vecior

vector al po ;
| in the plane, 05 shown in Fig. 5.32. T'.j prove that E‘J-_{ﬁ,ﬁﬂ} is valig
he putch un vestigalion, substitute Eq- (5.59) into Eq. (5.43)
to obtain

vy Fo(i)F

which states that the pormal
[PCr, v - Puo
for any point of l
and redoce the resull

VFa(v) + F () ()]

(v) + F|(1!
Fﬂ{u]Fliv} + HEFL{HFEI:],!}

P, V) = g0l F () F
+ P,m[nth[thll‘,v} g Fa(u)F (V) + 4
+ a,F E(H}FE{F] + ﬂﬁF;,,l‘,u)F 5(¥) + ﬂﬁFq{r:]F!{v}
HTfrng)Fjil'} =+ EHF]{H]P‘,-;{'I-'} =t ﬂq}szH}Fq{]J]
= P].'I'.I:I[b]FI{ H}Fl{v} =+ IJ,;E,*{H}F](H} 4 bEFI(H}FE{:“} + bHFz{“)F:('l.r}
+ beF (V) + beFa)Fy(v) + Fi(u)Fs(v) + b Fo (1) F5(v)
+ bgF l{u}f".,{v] + bgFE{H}F 4(v)]
Puii
P PL{" P“ Plll 1
iy s
Poo | 9
Noy
Py - M
L &
Fag i Puio
¥
e Puio
&

Fig. 5.32 A Bicubic Plane Patch

The coefficient of i
P
Tl'_IE g g uPu;u in ::':dabuve equation is equal to unity if
functions aref(u, v) anﬁm P.gy are functions of u and v ]Eq. (3.52) is used.
P(u 1EE::MFIT':} respectively, the above equati only. Assuming these
» W)= = on can b i
The normal vector Ny, can bemm-i{};: VIR o0 + g1, VIP 4 : Wntle:; -
as 5.61)

Noo = Pouoo % Pigg
(5.62)
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gubstitute Egs. (5.61) and (5.62) into the lefi-hand side of Eq. (5.60). This gives
(P00 % Pioa) - 1AM VIP 00 + glae, WP, ]
= fla, VIP, g0 % Pgq) - Poo + 20, WP, 00 % Poood * Poog (5.63)

The right-hand side of this equation is equal to zero regardless of the values of 1 and
v. Therefore. Eq. (5.60) 15 valid for any point and the bicubic patch is planar.

The above technique can be generalized to test for planarity/nonplanarity of a
picubic patch based on its geometry matrix [B]. Let us define the matrix [5] as

(8] = [Mz1[B1[M]" (5.64)

{f a bicubic patch is to be planar, the elements s, of [S] must satisfy the following
equation:

’mzzfﬁ—ﬂﬁi Do ‘““22(5 5

1i=1 i—{l_rnl _D(j -'Fj

+ N, = =0 5.65
mzzfﬁmmﬁ Fo S

im]l =}

where Voo, Moo and N, are the components of the normal vector Ny, and K is
defined by

- K =Ny Py (5.66)
The Pracucal implication of this example is the ability to construct planes with curved
huundane.s as opposed to straight boundaries, discussed in Sec. 5.5.1.

5.6.2 Bezier Surface

A tensor product Bezier surface is an extension of the Bezier curve in two parametric
directions 1 and v. An orderly set of data or control points is used to build a

Fig. 5.33 A 4 x5 Bezier Surface
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topologically rectangular surface as shown in Fig. 5.33. The surface Cquatioy, Can

be written by extending Eq. (4.91); that is,

I i :
Pir, v) = z z P,B; ,()B; (V) 0susl,0=svs] (5.67,
islf=1
where P{iﬁ u} 15 any p{.'li]'". on the HurfﬂCE- and P{{ f“_ﬂ ﬂ';ﬂ-]fﬂdntrﬂ] points. -1--]_.“:!';'1
points form the vertices of the control or characteristic Pﬂ' yhe ‘mn l::al'!nwn dashe,
in Fig. 5.33) of the resulting Bezier surface. The points are ﬂﬂ;ﬂﬂgﬂd inan (n 4 |
W (m+ 1) l‘t.‘bﬂt!’l.l‘igl.llﬂr array, as seci fmm the above qu-llﬂlll}n., N CoOmparison ""-’iﬂj
Eq. (5.94) of the Bezier curve, expanding Eq. (5.067) gives

Plu, v) = Pyy(1 — )"(1 — )" + Py Cln, 1YCGm, Duv(l — w)" ™ 1 = pym!

n=2 m— 2
+ Py, C(n, 2)C(m, E}:izv'l{] — i) (1 —-v) + .. %.: )
; - - B mm
+ Py, _ 1yom— 1yl 1= 1C(m, m — Du” b =11 = w)(1 — ) E“EE
+ P, """

+ P]ulr:fﬂ, ]}H{l = H]n = I{]. == U}m =+ Pm{':{m, 1:]1.?'{] — u}"(i v 'L.'}'h"“ |
+ Py Cn, 2021 — 10" = (1 = )™ + P Clom, 21 — u)'(1 = pym =2

‘E +.. .+ P (1 =) + P, V(1 —u)"
%E“’; oot Py Biom - 20, 11— NC(m, m = 2)u" ~ Tt 1y W)(1 — yy?
]

+ Py 23— 1yCl, n —2)C(m, m— 1" ~2ym =11 w1 - ) :

+ P{" 5 ”mC{H, H— ]}Hn B l'l-"nr{l — i) + Prlfm— Huﬂvm_ ILF] B 1’} {553]
The characteristics of the Bezier surface are the same as muse,‘-::-f the Beripr
curve. The surface interpolates the four corner control points (see Fig. 5.33) if we
substitute the (1, v) values of (0, 03, (1, 3 (0, 1) and (1,1) into (5.68). The surface
is also tangent to the corner segments of the control polyhedron. The tangent vectors
at the cormners are:

P"Dn = H[—Piﬂ — Fm} Pﬂ'ﬂ’ﬂ = H-{Pn{' — P':"_ I_}‘]] ﬂlﬂ-ﬂg V= D &dgﬂ

P-:rﬂ.rn o "{PIm = Pﬂm) Punm =MA py — an - l}m} a]ung v=1 &dgﬂ

Poy=mPy — Py Pog,, = miPy, — Py, - ) along u=0edge

l:’.L'.l'r'[i' - mipﬂl e Prrﬂ} P:.u:m = mu]ﬂm i Pm‘,m - l,]} ﬂ]ﬂﬂg =1 Edgﬂ
In addition, the Bezier surface possesses the convex hull property. The convex hull
in this case is the polyhedron formed by connecting the furthest control points on
the control polyhedron. The convex hull includes the control polyhedron of the
surface as it includes the control polygon in the case of the Bezier curve,

The shape of the Bezier surface can be modified by either changing some vertices
of its polyhedron or by keeping the polyhedron fixed and specifying multiple
coincident points of some vertices. Moreover, a closed Bezier surface can be
generated by closing its polyhedron or choosing coincident cormer points as
illustrated in Fig. 5.34.

(5.69)
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Fj'-:.l

The normal to a Bezier surface at any point can be caleulated by substituting

_(5.67) into (5.11) to obtain

¥
F)

e
_—

Niu, 1)

(@) Closed u edges (20 » 20 surface mesh)

(£} Closed v edges {polygon and 4 = 4 surface miesh)

Fig. 5.34 Closed Bezier Surface
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nn

IB; (V)
" i iiaﬂf.n J,nl(p}ﬂk'ﬂ{u] =T Pli'j KPL-: (5.?['!}
= E;:nk=ﬂf=“ e

.. equation, it should be noted that Py X Py =0if i =g 5.
15 G T

When expanding th

LY Il = o C'l..ln [

i cign flexibility need a largﬂ‘c ontrol pajp,
control points. Surfaces ren.]u;rﬂri iﬁ;ﬂepn%;lnﬂmm] degree. To achieve requjp, d
array and would, llm‘r-:f::-ri:. h e surface degree manageable, large surfaceg are
desian flexibility while 1;::-::;:-1111% ,ether smaller surface patches of lower degyeq,
generally flcsi:g. “?{I iﬁr g;;i::lgnl?ﬁm surface low but requires a S?Eﬂiﬂl atte Ntion to
This keeps ltf:, over siate continuity is maintained across II!EltLh h‘:’”“dﬁl‘%t‘:a, A
ensure that ap?m_[:] cface can have C° (positional) and/or C' (tangent) continuity,
EﬂﬂlpF‘:&ltEﬂlE:;;‘:i;iiw hetween, say, two patches requires that the common bound
::Aufvﬂzizggvﬂen the two patches must have: a mmmnn.hﬂundﬂﬂi lfiﬂl‘.‘r’gﬁn_ hEI.WE:E;n
the two characteristic polyhedrons (see Fig. 5.35a). For tan%jen Lun:.muu_}r dCrosgg
the boundary, the segments, anached_ to the common b‘-::sun ary polygon, of ope
patch polyhedron must be colinear with the c:_:rn:eﬂpqndmg segments of the othe,
patch polyhedron, as shown in Fig. 5.35b. This Il'f*ipl_lES that the tangent planes of
the patches at the common boundary curve are t:Dll'lEldEf‘IL . ‘
In a design environment, the Bezier surface 1s supenor to a bicubic surface in
that it does not require tangent or twist vectors to define the surface. However, j5
main disadvantage is the lack of local control. Changing one or more control poig

affects the shape of the whole surface. Therefore, the user cannot selectively change
the shape of pan of the surface.

Common boundary polygon
.--"'._F ""'.\‘_
_...----""1:"' :F' _.‘Fr'_r______.i-———-—-‘\; h“‘-l
N i G2 T o e S
~ . S =
] ] i 1 | 1
R e SV Tl M, (W
. 1 ..--""'F-H- i ‘1 _I 1
: L i 1 1
_____ l_____-__
\ 1 1 \
o » e oo 1 |t ————
s
Paich v A
I Patch 1 P;;E—E'——-—-J
(a) C° continuiry

: (b C! continuity
Fig. 535 Composite Bezier Surface

Example £ 57 Fing i icubi
T = 2 Iindthe equivalent bicubic formulation of a cubic Bezier surface
Solution This equivalence

is usuall
where, say, one subroutine g Y useful for
also useful ;
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Figure 5.36 shows a cubic Bezier patch. Substituting n = 3 and st =3 In1o
Eg. (5. 67), the patch equation is

P(u, v) = EEF}; B; 1 (1) B 4(v), D=u=1,0=v=sl (3.71)

i=0j=0

This cquaﬁun can be expanded to give

Plu, v) = Z B;, 3(t)[PpBg (V) + P, B, (1) + PuBy 4(v) + Pl 3(v)]
+ By, 3(1)[PyoBy 3(v) + Py By 5(v) + PppBy 5(v) + PgaB3 (V)]
+ By 3(0)[PoBy 3(v) + Py By 5(v) + P 3B, 3(v) + PyaB alv)
+ Ba 3(1)[PapBy 3(v) + Py B, 4(v) + PagBy a(v) + Py3Bs ()]

+ Ba 3(1)[PapBy, 10v) + Py By 3(v) + PaBy 5(v) + Pyl 3(v)]
This equation can be written in a maltrix form as

Poo P Po Pos || FosV
Py, Py P P B, 5(v)
Py Py P Py || By (W)
- Py Py Py Py | By 5(v) |
(5.72)

i Pl:h'q. U-:F - [Bu‘ 3{“} Hl_g(”} Bl. 3{”.} B_a_ 3':“.}]

or Pl v)=[(1 —u)® 3u(l =1)* 3u7(1 —u) ’1[P]

or P, v) = U TMGIPIIME"V

(23
A
— [Poae, D Pa3(1, 1) P02,77
bt
£3
} P30(1,0)
Popl(0, 0) pa— —=f !

(@) Parametric spacc _ (1) Cartesian space
 Fig. 5.36 A Cubic Bezier Palch
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i nd
where the subscript B denotes Bezier a

Py Por Pz Toa
Pm Flt Fli FIE
= Py Py Py Py
I"m P‘u Pﬂz F‘i:!,_
(-1 3 =3 1]
-6 3 0
and [My] = jj 1 0 0 (5.74
1 @ © 0]
and the U and V vectors are [1® 1 u 1]T and [v" viy I]Traspni:;ftivel}n Notice thy | M,
given by Eq. (5.74) is the same matrix for the cubic

Bezier curye (See
Prob. 4.9 in Chap. 4). ,
Equating Eq. (5.73) with (5.42) gives ;
UIMABIM)'V = UTMI(PI[M, )™V

or [(MIBIM,]" = (Mgl PIM,]"

Solving for [B)] gives

[B] = [(My]™ IMGILP) M1 (M, 7

Using Eq. (4.86) for [M,,]™", this equation can be reduced to give

Poo Fos I 3(Py; —Pyg) 3(Py; ~ Pyy)
Py, - W S N e 3 -Py)
Lo _":E:;:_];n;;“f(f':_a-:'ﬁl;'_l 9Py, -Py —Po +Pyy) 9P, P ~Py +P;)
3P0 —Pag)  3(Pyy—Pyy) | WPy ~ Py ~ Py + ;) NPy ~Py —p,, +P;.)

. } for the bicubic Patch reveals that the
langent and twist vectors of the Bezier surface drc expressed in terms of the verticeg
of its characteristic polyhedron. -
Note: Equation (3.72) offers g concise matrix form of Eq. (5.67) fora Cubic Begjer
Surface. This form cap be extended 1o an (n+1) % (m+ 1) surface ag follows:
er Fﬂ-l : FDJTJ_ -ED,mEu}_
Po B, . p |l v)
Plu, v) = [‘Hﬂ-, nl1) BI. nll) ... BH.N(H} :ﬂ .fl !m 1”'( .
.,PHD Pﬂl e PJ':IIHJ _FBJ]‘ m':tlrj‘
: (3.76)
5.6.3 B-Spline Surface

The same tes

_ 10T product method yseq with Bezier curveg can extend B-splines to
describe B-spline surfaces, A rac

tangular set of data (control) Points ¢reates the
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=
-spline surface

teristic polvhedron that
urface. A B
shown in Fig,

¢ polyhedron as
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the vertices of the charac

ntrols the shape of the resulting s

interpolate the vertices of 1h

his set forms
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es and €0

(a) Patch spproximaics data points
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i

of the number of control poinyy

sy dent : d
The degree of (he cally maintained throughout the surface by virtue of the form,

continuity is automatl face intersections can easily be mangee
| ans. As a result, su ace ged.
of blending functoH patch defined by an (7 + 1) % (m + 1) array of contro] POintg

B-spline surface : _ e
is gj?ve nqg}r extending Eq. (4.103) 1nto two dimensions

LB <yp<
Plu, U) = z z EJNI,E {"}Hj,.{(p]’ 0 < u S Uy D=sve Vinax {5_??}
i=0j=0
Al the related discussions to Eas. (4.104) and (‘tlgf} ﬂpsl}’ ;ﬂ the aboy,
equation. Equation (4.77) implies that knot E’ﬂ_ﬂlﬂl's- in bo ]::j anl : v ”ﬂ‘flmns ire
constant but not nﬁ:essﬂri]}' EI:]UEIL Other fﬂm'l:u].ﬂ!:lﬂﬂﬁ cou : allow various krll]t
vectors in a given direction (o increase the ﬂi_lerblllt}-' of lﬂ‘:‘:ﬂ control. ‘
B-spline surfaces have the same characteristics as B-SFI]II’IE: curves. .Th eir majo
advantage over Bezier surfaces is the Ic:-r:a] crfntml, Composite E—splmﬂ_ Surfaces
can be generated with C° and/or ! continuity in the same way as composite Bezje,

surfaces.

[Efﬁﬁl&r-';?-j—l Find the equivalent bicubic formulation of an open and closeg
" cubic B-spline surface.

Solution Most of the results obtained in Examples 4.21 and 4.22 can be extendeq
to a cubic B-spline surface. First, let us find the matrix form of Eq. (5.77). Thjs
equation is identical in form to the Bezier surface equation (5.67). Thus, by replacing
the Bernstein polynomials in Eq. (5.76) by the B-spline functions yields the matyjy
form of Eq. (5.77) as

FPm Pn| .y P{lm_ |- Nﬂ,f(“') T
Py Py - B, || Npiw)
Plu, v) = [Ny ) Ny ) ... N, i (u)] j:u 5 ! ” (5.78)
_Pnﬂ Pnl =iy Pﬂm o _Nm.,!{p.}
Or )
[ No.t ()]
Ny g(v)
P{H, I:J} = [Nﬂ. t{!ﬂ NL;‘[H} e NFT; I{HHP]] 1': F- 1 5 {5 79]
[ N1 (v) ]

where [P] is an (n+ 1) % (m + 1) matrix of the verti isti
. ces of the characteristic polvh
of the B-spline surface patch. For a 4 x 4 cubic B—sp]ii{;ypzﬁn

Eq. (5.78) becomes
o Pm Py Pﬂ“;!_ _Nﬂ,-l.':'l"}-‘
Po By By By || N
Fao Py Pp Py || N; ()
-_N_;_.ql:'l']_

Plu, v) = [Np 4(t) Ny () Ny (1) Ny 4(u)]
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: open patcil, i : ons are the same as the | .
_F’;ilsmviﬂus Ex;;;P:fﬂE_m::; 12 If;-":rgpll: 4.21) and the -:qui‘l:: Iu?:ir’c_'r:jit: ;:;cpif‘l?nﬁ“ﬁ.mﬂ
::;u_lls j/ B (-2 TRR SR A Open cubic B-spline patch, we gey Ormulation
[ No,4(v)
N 14 (v)
[V (1) Ny 4(u) N, 4y N (t N2.4{1’J Osu<?
p(un v) = N0.4 . 2, 3alt) N, LGaren N, .ol Desea
N, 4,4 (v)
v LVse()
w‘hﬂ'ﬂ _Pm Pﬂi, ’P;Pl PTE Pﬂq Pns -
P Py P; P, P, P
[P]= Py Py Py Pg-_; P, ..
Po P Py Py Py Py
Poo Py Py P, P, Py

=i

mdllﬂﬂj to
-Fﬂ{Ht v} : I'll{ui 1"') Hg{ﬂ, 'u}
p<u<l | 0Susl | 0<u<],

e S — - T -

que{ti?n are calculated by fn]]uwiné the
r this is done, the above equation can be

- [UTIM IR IM TV | UTIMS IR M TV | UT M R M TV
UMM TV | UT IM NP 1M Y V | UT (M [P IIM T V
(5.80)

—where [Pyy], [P12],---, [P23] are partitions of [P]. Each partition is 4 x 4 and is different
from its neighbor (moving-in the row direction of {P]) by one row or by one column

(moving in the column direction of [P]). The general form of any partition is
by
(Po-ni-n  Pe-n; Pa-ngen Puopyes |
Fii-n Py Fij+n Pitja)
[FH] . P::.r+1}u—n P;'.r+1]u' P::HHUHJ PEH- 1 j+2)

hﬁf-{-ﬂ}{_j—]j Pl[i+1]j Pl;f+2}{j+ﬂ E:H‘IH_HEL

given
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The matrix [M] 18 the same as for cubic B-spline curves. It is given by
N <3 - ]
1|3 =6 3.0
M= s 0773 ¥ (581,
i <% 0
Equation (5.80) can be written in a maore concise form as
Py ) = UTIMSIP MY
gz, 1EiEAhUs y<u<h G=DSvsj
(5.82)

tion with the hicubic equation, the equivalent [B, ]
yd Malry

Equating the above equa
becomes
(8,1 = My [Ms] (P IMs) M) (5.83
above procedure can be extended to an # > M cubic B-spline guﬂ; }
a closed cubic B-spline patch 'T‘LE'

z (i

re can be followed for
of the B-spline functions. For a 4 % 4 cubic B-spjj
e

on, or both directions, the following thre
L

Notice that the

A similar procedu
difference comes in the form
patch closed in the u direction, the v directi
equations can be writlen respectively:

Plu, v) = [Ny, 4l(u + 4ymod 4), N, 4((u +3) mod 4),

Ny 4((u + 2) mod 4), Ny, 4((u + 1) mod 4))

hNﬂ,‘:{"}-l
Ny, a(v)
*[P] Nj a(v)

u”s_q {ﬂd

"Ny 4 (v +4) mod 4) ]
N4 ((v+3) mod 4)

[Np,a(t) Ny 4() N, o) NioIPY| o (v + 2) mod 4)

_N{,‘#,{I[v + 1) mod 4)

Plu, v) =

Piu, v) = [Np o((u + 4) mod 4), N, 4((u + 3) mod 4

and
Hu;.,.m.r_+_2;l-mﬂd-4;!, Ny 4l + 1) mod 4)]

[ Ny 4 ((v+4) mod 4)]
Ny a(v+ 3) mod 4)

x[F) h"n_,,{{v+ Z]i mod 4)

| Ny, 4 ((v+1)mod 4) |

'é'h: I:éfslﬁg B-spline functions have been evaluated in Example 4.22, Investigatin
Eg .{5 éj} aﬁvm‘r that ‘Lhen: are four different expressions for the matrix [5] [sei
. (5. e] depending on the value of u, v, or u and v, For, say. a 5 % 6 closed
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ubic B-spline patch, the . LT
€ thove Procedure g repeated bul with the funclions

LT,LI 45{}1:!.:11.,; IE{:”H_:_G:I} i:néﬂﬁlj inﬂui-p 4) mod 5y, Now 41t + 3) mod S). Ny g(( + 2)
ornd 6}1-},._," A1+ 3) mn?T [Ng 4{(1 + 6) mod 6), Ny, 4((tt + 5) mod 6), Ngs((u +
trol point matrix ”; ; ¢ 6), """'ru, bl + 2) mod ), f';.-'ﬂ ({2 + 1) mod 6)]. The

564 Coons Surface

1e surfoce methods i

R e e e B A i points o generate the respective surfaces,
In co uriace patch is a form of “transfinite interpolation” which
indicates that the C-::-t_um scheme interpolates to an infinite I':l.lth:{:' of data points
that 15, ol st ul:a cUTVE segment, to generate the surface. The Coons patch 1':

cularly useful in blenclimg four prescribed intersecting curves which form a
closed boundary as shown in Fig. 5.38, The figure shows the given four boundary
curves as P(u, 0), P(1, v}, P(x, 1) and P(0, ). I is assumed that i and v range from
0 to 1 along these boundaries and that each pair of opposite boundary curves are
idenuﬂiilﬂlr’ Pﬂmﬂcmf‘ﬁﬂi Development of the Coons surface patch centers around
answering the following question: what is a suitable well-behaved function P(u, v)
wliich blends the four given boundary curves and which satisfies the boundary
conditions, that is, reduces to the correct boundary curve when u=0, u=1,0=0

andv=17
Plu, 1)

A PO, v

P(1, v)

- P{u, 0}

1
(#) Parametric space (&) Cartesian spacc
Fig. 5.38 Boundaries of Coons Surface Patch

Let us first consider the case of a bilinearly blended Coons patch which
interpolates to the four boundary curves shown in Fig. 5.38. For this case, it is
useful to recall that a ruled surface interpolates linearly between two given boundary
curves in one direction as shown by Eq. (5.36). Therefore, the superposition of two
ruled surfaces connecting the two pairs of boundary curves might satisfy the
boundary curve conditions and produces the Coons patch. Let us inveshigate this
claim, Utilizing Eq. (5.36) in the v and u directions gives respectively

P,(u,v)=(1- )P0, v) + uP(l, v) (5.84)

e P,(u, v) = (1 — v)P(u, 0) + vP(u, 1) (5.85)
Adding these two equations gives the surface

(5.86)

Pi:h‘-,. 1"‘} = P|{u! ‘l-'] + PE{HT U}
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The resulting surface pateh deseribed by Eq. (5.86) df‘_ﬂﬂ “'5“_5““5_1‘3" the boupg,,
o mulili: ons. For example, substituting v =0 and 1 into this equation gives Ttxm“'i\'uiy
Piu, 0) = P, O) + [(1 - PO, ) + ul(l, 0] (5.87)

Pl 1) = P, 1) + [(1 =P, 1) + 1P, D] (5.88

These two equations show that the terms in square hm‘fk‘f;; e Efﬂfﬂ_:md shoy)y
be climinated to recover the original hmlnda!}' curves. .L:qv:. terms defipe the
boundaries of an unwanted surface Pa(u, l’:f Wh‘l‘:h 15 "-“'“.b“d".‘ﬂd in EQ-_ (5.86), This
surface can be Hefined by linear interpolation in the v direction, that is,

P.(u, v) = (1 = vI[(1 — )P0, 0) + uP(l, 0)] + v[(l - )P0, 1) + w1, 1)) {E.HE}J
sﬁbuﬂcﬁng P,(1, v) (called the “eorrection surface™) from Eq. (5.86) gives

Plu, v) = P(u, v) + Pylu, v) = Py(u, v) {5.91[]]
or Pl v) = Py, v) @ Paolu, v) (5.9
where @ defines the “boolean sum” which is Py + P; — P3. The surface py,, v)
given by the above equation defines the bilinear Coons patch connecting the four

boundary curves shown in Fig. 5.38. Fi gure 5.39 shows the graphical representatio,
of Eq. (5.91) and its matrix form is

0 P00 Pul) =7

— - — o — Ty

(3.9
P(l,v) | P(1,O) P, D v

The left column and the upper row of the matrix represent Py(u, v) and p A, v

respectively while the lower right block represents the correction surface P,.“_%.[u, V)

The functions —1, 1 — u, u, 1 — v and v are called blending functions becayse lhe:;
blend together four separate boundary curves to give one surface.

The main drawback of the bilinearly blended Coons patch is that it only Provides
C° continuity (positional continuity) between adjacent patches, even if thei;
boundary curves form a ' continuity network. For example, if two patches are to
be connected along the boundary curve P(l, v) of the first patch and P(0, v) of g,
second, it can be shown that continuity of the cross-boundary derivativeg
(Fig. 5.40) P (1, v) and P (0, v) of the two patches cannot be made equal (see Prob,
5.7 at the end of the chapter).

Gradient continuity across boundaries of patches of a composite Coons surface
is essential for practical applications. If, for example, a network of C' curves is
given as shown in Fig. 5.41, it becomes-very desirable to form a composite Coons
surface which is smooth or C' continuous, that is, it provides continuity of cross.
boundary derivatives between patches. Investigation of Eq. (5.92) shows that the
choice of blending functions controls the behavior of the resultin & Coons patch. If
the cubic Hermite polynomials F; (x) and F5(x) given in Eq. (5.52) are used instead
of the linear polynomials (1 — &) and « respectively, a bicubically blended Coons

patch results. This patch guarantees C' continuity hetween patches. Substituting
F(x) and F,(x) into Egs. (5.84) and (5.85) gives

Py, v) = (2u° = 32 + DP(0, v) + (20 + 3uDP(L, v)

(5.93)
Py, v) = (2v* — 317 + P, 0) + (=2v® + 31)P(u, 1)

(5.94)
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L1

Sy Bl o

—_— i Plu,

Fylu, v) -+ Palu, v)
(1 = P00, 1)—w P(1, 1)
N

l.---""""r'_-r_.;

i

l.

(1 — )P0, 0)+ u P(1, 0)
-Pg.l::ﬂ', "::l' - PI:'LI', ¥)
Fig. 5.39 Bilinearly Blended Coons Patch (boolean sum)

Pu (0, ¥} Pu (1, v)
_?’.
P (0, 0) " 1\ Ak
P (e, 0
Fig. 5.40 Cross-boundary Fig. 5.41 A Composed Coons Surface
Derivatives Formed by a Network of C?

Boundary Curves

Similar to the bilinear patch, the boolean sum /; @ P, can be formed and the
matrix equation of the bicubic Coons patch becomes

0 PG, 0) Pu,D]|[ -1
Pu, ) =-[-1 F,(1) F)][PO,v) P0O.0) POD| Fw| (595
P(lLLv) P(,0) POLD||F®

As can easily be seen from Eqs. (5.92) and (5.95), the correction surface is usually
formed by applying the blending functions to the corner data alone. ;
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To check continuity across pateh.
41. For C° and C! continuity

[l‘{{], v}]p&t:h a = [P{L "})]p:]t.:h 1

ch boundaries |et us consider patch 1 and patey, 5
we should have

{5,9?}

[Fn{ﬂr "ﬂr:l::h B [PH{]' y”i’f"‘-‘h I b

is automatically satisfied betweer the two FﬂtClE'lﬁh Sﬂ;ﬂjuse they share

ih ;e boundary curve- For C' continuity. differentiating £ (5. } With respee
e sl i n Bq. (5.53) for the derivatives of £ and Fy ang

ing G d Gyfx) i i
to o, using {-'1{-1') an i'-{ ) GE[” _ G:{l}l = (), we can wrile

\oticing that G(0) = G,(0) =
] g 1 Pu':ul ],J} — F](U}P"{H+ 'ﬂ_} + FII;H}PH(H* 1] (5‘93}
the two patches, this equation become,

in Fig. 5

° continuity

At the common houndary curve between
[PH{DI p}]Piﬂ’E!! 2 = F' {U}P”[u' U} " FE{U}P“{G* 1} {Srgg.:'
= F(P,(1, 00 + F,(»P, (1, 1) (5.100)

and FPH{L V:—'}pnt::h I : .
Based on Egs. (5.99) and (5.100), Eq. (5.97)is satisfied if the network of boundgyy

curves is € continuous because this makes P, 0, 0)paich 2 and [P,(0, 1II}]puw;h. 1

equal to P (1. 1)) and [P, (1, Dlpatch 1 rﬂsgective:l}', 'ljher-:l:f'nre. continuity of
jvatives is autom atically satisfied for bicubic Coons patches jf

cross-boundary der
¢! continuous.

the boundary curves are _
The bicubic Coons patch as defined by Eq. (5.95) is easy to use in a desigp

environment because only the four boundary curves are needed. However, a more

flexible composite ! bicubic Coons surface can be developed if, together with the

boundary curves, the crbss-boundary derivatives P (0, v), P(1, v), P (u, 0) and

P, (u, 1) are given (see Fig. 5.40). Note that at the cOTNETS these derivatives must

be compatible with the curve information. Similar to Eqs. (5.93) and (5.94), we

can define the following cubic Hermite interpolants: ; 1
Puvi=F [P0, v) + Fo(u)P(1, v)

.+ F3()P,(0, v) + F ()P (1, v) (5.101}
and Py(u, v) = F () P (e, 0) + Fy(v)P(n, 1)
+ FynP,(u, 0) + F, 0P (1, 1) (5.102)

where the functions F, to F, arc given by Eq. (5.52). Forming the boolean s

(P, ® P,) of the above two equations results in the bicubic Coons patch ’;‘;‘m
incorporates cross-boundary derivatives. The introduction of the cross-bound -
derivatives causes the twist vectors at the corners of the patch to appear. Th ndary
equation of this Coons patch can be written as sk TR

P, v)=— [=1 Fiw) Fy(w) Filu) Fa0]

0 P.0) Puul) P(u,0) P D][ =1 |
PO.v) PO,0) PO P,0,00 PO ||/
< | POLY) PLO) PALD POALO PO || RO
P,(0,) P,0,0) P,(0.1) P, (0,0) P, (01|

P,(,v P00 PALD P,10 P, AD]| FG)
) (5.103)
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3 = 3 matrix determines the p;
e uppPer - S he patch defined previous

5 T : [(SINES ! .
ft column and the upper row represent P, v 'mjl P i Eq'-ES'JS}' e
e Jower right 4 >4 malnx represents the bicubic 1‘ :: alts ¥) TEspecnve s, s

t = . i ne tensor product surface discuss
- cce Ea. (5.433). Bqu: surface discussed
in 5"‘"‘5'{:‘;1 -J-?T'c illft-lni,{:uc‘u-: ?_l}hi.. ql; !t‘“m {5' 103) shows that every bicubically blended
Coons surface rek {ba.de cubie surface. On the other hand, bicubically blended
e pnl-;hb!‘- cannot be described in general by bicubie tensor product surfaces

on formulation can describe g T A
Thus, €O a much richer va 5 .
(NSO pmdur:t surfaces. ricty of surfaces than do

e sle .=-_' 5.‘9 _Slll:!'w that if the boundary curves of a bilj
ﬁ"]mﬂf the resulting patch is also planar, % of a bilinear Coons patch are

co-P
i d to show that th f i
golition We nee e surface normal at any point on the surface i
- ormal to the planc of the boundary curves. Based on Eq. (5.90), the suriFﬂma ta?t.jgz;i
\r.ﬂ:[ﬂl'ﬁ are
P (u v) = [P0, 0) + P(l, v) — P(0, v) + P(0, 0) - P(l, O]
+ V[P, (1, 1) =P, (u, 0) + P(l, 0) — P(0, 0) — P(1
A, A ,0) = P(1, 1) + PO,
= A +vB g
and P ) = [P0.) + Pli, 1) = P, 0) + P(0, 0) — P(O, 1)]
+ u[P (1, v} =P 0, v) —P(0, 0} + B0, 1) + P{1, 0) — P(1, 1)]
= C + uD
it can easily be shown that P (u, v) and P (u. v) lie in the plane of the boundary

curves. Considering P, (i, v), the vectors P (u, 0, P(l, v) — P(0, v) and P(0, 0)
_ P, O) lie in the given plane. By investigating the coefficient of v, the vectors
P,(u, 1). P, (u, 0), P(1, 0) — PO, 0) and P(0, 1) — P(1, 1) also lie in the given plane.

Therefore, vCclors A and B lie in the plane. Consequently, the tangent vector

P,(u, v) to the surface at any point (i, v) lies in the plane of the boundary curves. The

came argument can be extended to Pu, v).

The surface normal is given by
Niu, V=P, xP,=(A +vB)x (C + wl))

rpendicular to the plane of P, and P, and, therefore, the plane of the
Thus for any point on the surface, the direction of the surface
pormal is constant (the magnitude depends on the point) or the unit normal 1s fixed
in space. Knowing that the plane surface is the only surface that has a fixed unit
cormal, we conclude that a bilinear Coons patch degenerates to a plane if its boundary
curves are coplanar. Thus, this patch can be used to create planes with curved
houndaries similar to the bicubic surface covered in Example 5.6. Note, however,
that a bicubic Coons patch or any other patch that has nonlinear blending functions

does not reduce to a plane when all its boundaries are coplanar.

which is pe
boundary curves,

56.5 Blending Surface

This is a surface that connects two nonadjacent surfaces or patches. The blending
surface is usually created to manifest C° and ¢! continuity with the two given
patches. The fillet surface shown in Fig. 5 11 is considered a special case of a
blending surface. Figure 5.42 shows a general blending su rface. A bicubic surface



o and ¢ continuity. The
- face and their related tangen;
rwo patches: ']"hr:;'_a::i ore, 1;13 (B]
, .. plending surtace jg
ly av A bicubic D
; st aan cwm*ﬂm'ﬂ jer OT B-spline patches.

=
Fig. 542 A Blending Surface

ne blending surface may be generated in the

1 1 ] - t vectors beginnin

wine scenario. A set of points and their related v-tangen 2

{vnill]l? f:nﬁm:l ending with P; can be generated along the v =1 edge of patch 1.
I : be generated along the v=0 edge of patch 2,

Similarly, a corresponding sct can
3 d between the two sets. These curves can be

Cubic spline curves can now be creale ! .
used to generate an ordered rectangular set of points that can be connected with the

B-spline surface which becomes the blending surface. Etc-me CADIC‘.ALJI Syslems
allow users to connect a given set of curves with a B-sphine surface directly. In the
case of the fillet surface shown in Fig. 5.11, a fillet radius is used to generate the
surface. Here, the rectangular set of points to create the B-spline surface canbe
generated by creating fillets between corresponding v = constant curves on both
patches. In tarn, points can be generated on these fillets.

For patches of other orders, 8 B-spli

5.6.6 Offset Surface

If an f:rﬁgipnl patch and an offset direction’ are given as shown in Fig. 5.12, the
equation of the resulting offset patch can be written as:

P, Viggser = PO, v) + 0 (1, v) d(ue, v) (5.104)

wher.f.z P, v), 0 (u, v) and d(e, v) are the original surface, the unit normal vector
at 1pi:‘u|'|l (4, -._=} on the original surface and the offset distance at point (i, v) on the
-_:rn]%fnal surface res_pemivcl}r. The unit normal n (u, v) is the offset dirc{:tirnn shown
in rfng. 5 12, Thul distance d(u, v) enables generating uniform or tapered thickness
surfaces depending on whether d(u, v) is constant or varies linearly in u, vor both.



293

{111]

Types and Mathematical Representations of Surfaces

5.6.7 Triangular Patches

Triangular patches are uselul if the given surface data paints form a triangle orif a

iven surface cannot be modeled by rectangular paiches only and may require at
Jeast one triangular patch. In tensor product surfaces, the parameters are w and v
qand the parametric dqmain is defined by the unit squarc of 0 sw <l and 0=V = 1.
In triangulation techniques, three parameters u, v and w are used and the parametric
domain is dﬂ":‘“‘-‘:d‘h}' a symmetric unit triangle of 0=y <1,0<v<land 0=ws=
1, as shown 1 Fig. 5.43. The coordinates u, v and w are called “barycentric
c.;.urdinﬂtﬂsf‘ W’l'lll_e the coordinate w is not independent of 1« and v (note that i + Vv
= 1 for aniy point in the domain), it is introduced to emphasize the symmetry
p.]-upe.rﬁﬂrﬁ of the barycentric coordinaltes,

War"1 P(0,1,0)

=

' .
20,0, 1) ¥ e, 0,0 (001

Parametric space

e

£
Cartesian space

Fig. 5.43 Representation of a Triangular Palch

The formulation of triangular polynomial patches follows a somewhat similar
pattern to that of tensor product patches. For example, a trian gular Bezier patch is

defined by
P, v, W)= 3 Py By alv,w), 0Sus10svs1,0swsl
Lk

(5.105)
where i, j, k=0, i +j+k=nandn is the degree of the patch. The B, ; , , are
Bemnstein polynomials of degree n: _

1 .
B pn= ——uv/w . (5.106)

il
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1

or data points that form the vertices of .
equired to define a Bezier pye

. ‘“IH T 2 2 h ':”-
- mber of data po! ; -ubic and quartic tyq;
control Pﬂlygmh[ﬂti I-]|-“; y(n + 2)/2. Figure 5 44 shows cub I Flang g,
H T 1}"
degree 1t 15 given

& 0 polynomials. The order of inpy,,,
Bezier putches with their r:':Iulfdﬂ?d{‘::;::;ﬂain: of a Bernstein pol I}rlmmiul .-«;hmti
dme; poinis Shl'lfllil E‘n]luwltimll'-;}";]-:;imH are ﬁ:quir::d Lo :::z'cate i} t]al::;rl|i E;u?:im. ke
in the figure. .[_'ﬂrmi‘“":‘lj rows. The first row b JPwePOITES: L | ) and eqqy,
and must be input 1 nve o (han its Pl-gdg{:tﬁﬁﬂr uplll we reach 1I1_¢ fing] Foy
ve row has one poti 7 ttern of input can be achieved symmetrically f,,
- Thl: p:lrlt the degree of the triangular Bezier patep, j thp
: irections iurf:{;;mul;l to the rectangular pm:ﬂ_h u,!rhrcll; Canhhﬂ"_’“ - ang

same in all diree 1-.iln.l~'. . and v directions respectively. However, ajp
nledeRte p_ul?-' ﬂf"h L tangular patch hold true for the tnmgul.ﬂ‘r patch,
characteristics of fhe Te€ an be modified in a similar fashion as descripyg

A rcctanEUhlr {:GFII'IH Pﬂﬂ:l:j": o Stih, Itis left to the reader, as an ExEl'EiEE1 i
above to develop a tria ngu!m oon! 'Ennular Coons patch.
extend the above formulation (o atriang

successi
that has only one po
any direction as shown.

Erviw\ /3-::1.3\
Faa /ﬁupi /_q"z‘,\
11'3-/—'-"3H!'H-': Futw 1y
Popa e v
{a) Cubic patch
/"4\
A /.4"1,3\
'51'3!4{ 120w Binas 1

fi/\/\ “
: W Jun? = Gulnw? 1w \ir-'l
Fapn ; _

Ly Cruartic pateh

Fig. 5.44 Triangular Bezier Patches







